

Vejledning til TI-30X Pro MathPrint™ videnskabelig lommeregner

Denne vejledning gælder for softwareversion 1.0. Du kan få vist den nyeste version af dokumentationen ved at gå til *education.ti.com/eguide*.

Vigtig information

Texas Instruments stiller ingen garantier, udtrykte eller underforståede, herunder, men ikke begrænset til enhver underforstået garanti om salgbarhed og egnethed til et bestemt formål for nogen programmer eller bøger, og stiller udelukkende disse materialer til rådighed "som de forefindes". Texas Instruments kan under ingen omstændigheder holdes ansvarlige for nogen særlige, indirekte, påløbne eller følgeskader i forbindelse med eller som følge af købet eller anvendelsen af disse materialer, og det eneste erstatningsansvar, Texas Instruments kan pådrage sig, uanset handlingen, kan ikke overstige købsprisen for dette produkt. Endvidere er Texas Instruments ikke erstatningspligtig for nogen krav af nogen art i forbindelse med nogen anden parts anvendelse af dette materiale.

MathPrint, APD, Automatic Power Down og EOS er varemærker, der tilhører Texas Instruments Incorporated.

Copyright © 2018 Texas Instruments Incorporated

Indhold

Ibrugtagning	1
Tænd/sluk for lommeregneren	1
Displaykontrast	1
Hovedskærm	1
2nd-funktioner	2
Tilstande	2
Multitryktaster	4
Menuer	5
Eksempler	5
Rulle gennem udtryk og historik	6
Skift svar	6
Seneste svar	7
Operationernes rækkefølge	7
Slette og rette	
Hukommelse og lagrede variabler	10
Matematikfunktioner	12
Brøker	
Procentværdier	15
Videnskabelig notation [EE]	16
Potenser, rødder og reciprokke værdier	17
Pi (symbolet Pi)	
Math	
Taltunktioner	
Vinkler	
Rektangulær til polær	
Irigonometri	
Hyperbolske funktioner	
Logaritmer og eksponentielle funktioner.	
Numerisk differentialkvotient	
Numerisk integral	
Statistik, regressioner og fordelinger	
Sandsynlighed	
Matematikværktøjer	43
Gemte operationer	
Dataeditor og listeformler	
Funktionstabel	48
Matricer	
Vektorer	
Ligningsløsere	55

Talsystemer	61
Evaluering af udtryk	62
Konstanter	64
Omregninger	65
Komplekse tal	67
Referenceoplysninger	
Fejl og meddelelser	
Batteri	75
I tilfælde af problemer	76
Generelle oplysninger	
Onlinehjælp	
Kontakt TI Support	
Oplysninger om service og garanti	77

Ibrugtagning

Dette afsnit indeholder oplysninger om grundlæggende lommeregnerfunktioner.

Tænd/sluk for lommeregneren

on tænder for lommeregneren. 2nd [off] slukker den. Displayet slettes, men historikken, indstillingerne og hukommelsen bevares.

The APD[™] (Automatic Power Down[™])-funktionen slukker automatisk lommeregneren, hvis der ikke trykkes på en tast i ca. 3 minutter. Tryk på on efter APD[™]. Displayet, afventende operationer, indstillinger og hukommelse bevares.

Displaykontrast

Lysstyrken og kontrasten i displayet afhænger af belysningen i lokalet, batteritilstanden og betragtningsvinklen.

Sådan justeres kontrasten:

- 1. Tryk på 2nd-tasten, og slip den.
- Tryk på [••] (for at gøre skærmen mørkere) eller på [••] (for at gøre skærmen lysere).

Bemærk: Derved justeres kontrasten et niveau ad gangen. Gentag trin 1 og 2 efter behov.

Hovedskærm

På hovedskærmen kan du indtaste matematiske udtryk og funktioner og andre kommandoer. Resultaterne vises på hovedskærmen

Skærmen TI-30X Pro MathPrint[™] kan højst vise fire linjer med højst 16 tegn pr. linje. Ved indtastninger og udtryk, der er længere end det synlige skærmområde, kan du rulle til højre og venstre (④ og ④) for at få vist hele indtastningen eller udtrykket.

I MathPrint[™]-tilstanden kan du indtaste op til fire niveauer af på hinanden følgende indlejrede funktioner og udtryk, som omfatter brøker, kvadratrødder, eksponenter med ^, $\sqrt[3]{y}$, e^x og 10^x.

Når du beregner en indtastning på hovedskærmen, afgør pladsen, om resultatet vises lige til højre for indtastningen eller til højre på næste linje.

Der vises muligvis specielle indikatorer og markører på skærmen med yderligere oplysninger om funktioner eller resultater.

Indikator	Definition
2ND	2nd-funktion.
FIX	Fast decimalindstilling (Se afsnittet Tilstand).
SCI, ENG	Videnskabelig eller teknisk notation. (Se afsnittet Tilstand).

Indikator	Definition
DEG, RAD, GRAD	Vinkeltilstand (grader, radianer eller nygrader). (Se afsnittet Tilstand).
L1, L2, L3	Vises over listerne i dataeditoren.
Н, В, О	Angiver, om talsystemtilstanden er HEX, BIN eller OCT. Der vises ingen indikator for standard-DEC- tilstand.
X	Lommeregneren udfører en operation. Afbryd beregningen med on.
▲ ▼	En indtastning gemmes i hukommelsen før og/eller efter det synlige skærmområde. Tryk på ⊙ og ⊙ for at bladre.
•	Angiver, at en multitryktast er aktiv.
	Normal markør. Viser, hvor det næste element, du indtaster, vises. Erstatter ethvert nuværende tegn.
*	Indtastningsbegrænsningsmarkør. Der kan ikke indtastes flere tegn.
-	Indsæt markør. Der indsættes et tegn foran markørens position.
	Pladsholder til tomt MathPrint™-element. Du kan bevæge dig ind i feltet med piltasterne.
	MathPrint™-markør. Fortsæt med at indtaste i den aktuelle MathPrint™-skabelon, eller tryk på ④ for at afslutte skabelonen.

2nd-funktioner

2nd

De fleste af tasterne har mere end én funktion. Den primære funktion vises på tasten, og den sekundære funktion vises oven over den. Tryk på 2nd for at aktivere den sekundære funktion for en given tast. Bemærk, at **2ND** vises som indikator på skærmen. Tryk på 2nd igen for at annullere, før du trykker på den næste tast. For eksempel beregner 2nd [----] **25** enter kvadratroden af 25 og giver resultatet 5.

Tilstande

mode

Brug mode til at vælge tilstande. Tryk på \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc for at vælge en tilstand og enter for at markere den. Tryk på clear eller [2nd] [quit] for at vende tilbage til hovedskærmen og udføre opgaven med de valgte tilstandsindstillinger.

Standardindstillingerne er fremhævet på disse eksempelskærme.

DEGREE (GRADER) RADIAN GRADIAN (NYGRADER) – Indstiller vinkeltilstanden til grader, radianer eller nygrader.

NORMAL SCI ENG – Indstiller den numeriske notationstilstand. Numeriske notationstilstande påvirker kun visningen af resultaterne og ikke nøjagtigheden af de værdier, der gemmes på enheden, og som fortsat er maksimale

NORMAL viser resultaterne med cifre til venstre og højre for decimalskilletegnet som i 123456.78.

SCI udtrykker tal med ét ciffer til venstre for decimalskilletegnet og den relevante potens af 10, som i 1.2345678E5, hvilket er det samme som værdien (1.2345678×10⁵) inklusive parenteserne, der sikrer den korrekte rækkefølge af operationer.

ENG viser resultater som et tal fra 1 til 999 gange 10 i en heltalspotens Heltalspotensen er altid et multiplum af 3

Bemærk: [EE] er en genvejstast til indtastning af et tal i videnskabeligt notationsformat. Resultatet vises i det numeriske notationsformat, der vælges i tilstandsmenuen.

FLOAT 0 1 2 3 4 5 6 7 8 9 – Indstiller decimalnotationstilstanden.

FLOAT (flydende decimalpunkt) viser op til 10 cifre samt fortegn og decimal.

0123456789 fast decimalpunktum) angiver det antal cifre (0 til 9), der skal vises til højre for decimaltegnet

REAL (Reel) a+bi $r \ge \theta$ – Indstiller formatet for resultater med komplekse tal.

REAL reelle resultater

a+bi rektangulære resultater

 $\mathbf{r} \angle \boldsymbol{\theta}$ polære resultater

DEC HEX BIN OCT – Indstiller det talsystem, der skal bruges til beregninger.

DEC decimal

HEX hexadecimal (Du kan indtaste hex-cifrene A til F ved hjælp af [A], [A], [A], [B] osv.).

BIN binær

OCT oktal

MATHPRINT CLASSIC

MATHPRINT-tilstanden viser de fleste input og output i lærebogsformat.

CLASSIC-tilstanden viser input og output i en enkelt linje.

Eksempler på MathPrint™- og Classic-tilstande

MathPrint [™] -tilstand	Classic-tilstand
Sci	Sci
12345 🛍 1. 2345 £4	12345 1.2345 ¥
Skiftetast til Float-tilstand og resultat	Skiftetast til Float-tilstand og resultat.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/8 1/8 1/8 0.125
Skiftetast til Fix 2 og resultat	Fix 2
2π [™] 2π 2π → 6.28	2π [₩] 6.28
Un/d	Un/d-indtastning
$4\frac{5}{9}$ $\frac{41}{9}$	4⊔5∕9 ^{∞∞} 41∕́9
Eksempel på eksponent	Eksempel på eksponent
2 ⁵ 32	2^5 ⁵⁶³ 32
Eksempel på kvadratrod	Eksempel på kvadratrod
√2 √2* 1.414213562	√(2)* 1.414213562
Eksempel på kubikrod ³ √64 4	Eksempel på kubikrod 3×164 ta 4

Multitryktaster

En multitryktast skifter mellem flere funktioner, når du trykker på den. Tryk på 0 at stoppe multitryk.

For eksempel indeholder IIII -tasten trigonometrifunktionerne sin og sin⁻¹ samt de hyperbolske funktioner sinh og sinh⁻¹. Tryk på tasten flere gange for at få vist den ønskede funktion.

Multitryktaster omfatter $[x_{iee}^{**}]$, [m], [m], [m], $[e^{-10^2}]$, $[n \log]$, [!n]; og $[\pi]$. Relevante afsnit i denne vejledning beskriver, hvordan du bruger tasterne.

Menuer

Menuerne giver adgang til en lang række lommeregnerfunktioner. Nogle menutaster, f.eks. [2nd] [recall], viser en enkelt menu. Andre, f.eks. [math], viser flere menuer.

Tryk på) og ⊙ for at rulle og markere et menupunkt, eller tryk på det tilsvarende tal ud for menupunktet. Du kan vende tilbage til den foregående skærm uden at vælge punktet ved at trykke på dear. Du afslutter en menu og vender tilbage til hovedskærmen ved at trykke på 2nd [quit].

2nd [recall] (tast med en enkelt menu):

RECALL VAR (Hent var)

1:x = 0 2:y = 0 3:z = 0 4:t = 0 5:a = 0 6:b = 0 7:c = 0 8:d = 0

math (tast med flere menuer):

MATH	NUM	DMS	R ⁴ P
1:▶n/d�▶Un/d	1:abs(1:°	1:P ▶ Rx(
2:lcm(2:round(2:′	2:P ▶ Ry(
3:gcd(3:iPart(3:″	3:R ▶ Pr(
4:▶Pfactor	4:fPart(4:r	4:R ▶ Pθ(
5:sum(5:int(5:g	
6:prod(6:min(6:▶DMS	
7:nDeriv(7:max(
8:fnInt(8:mod(

Eksempler

Nogle afsnit er efterfulgt af vejledning i tastetrykeksempler, der viser TI-30X Pro MathPrint™ funktionerne.

Noter:

- Eksemplerne forudsætter alle standardindstillinger som vist i afsnittet Tilstande, medmindre andet er angivet i eksemplet.
- Brug clear til at rydde hovedskærmen efter behov.
- Nogle skærmelementer kan afvige fra dem, der er vist i dette dokument.
- Fordi guider bevarer deres hukommelse, kan visse tastetryk være anderledes.

Rulle gennem udtryk og historik

$\odot \odot \odot \odot$

Tryk på ④ eller ④ for at flytte markøren i et udtryk, som du indtaster eller redigerer. Tryk på 2nd ④ eller 2nd ④ for at flytte markøren direkte til starten eller slutningen af udtrykket.

l et udtryk eller en redigering flytter ⊕ markøren til historikken. Hvis du trykker på enter i et input eller output i historikken, genindsættes det pågældende udtryk på markørens placering på redigeringslinjen.

Tryk på $2nd \odot$ fra nævneren i en brøk i udtryksredigeringen for at flytte markøren til historikken. Hvis du trykker på enter i et input eller output i historikken, indsættes det pågældende udtryk i nævneren.

Eksempel

7 <u>x</u> ² – 4 (3) (1) enter	7 ² -4(3)(1) 37
[2nd] [√] ④ ④ enter enter	$ \frac{7^{2}-4(3)(1)}{\sqrt{7^{2}-4(3)(1)}} 37 \\ \sqrt{37} $
• <i>z</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Skift svar

∢ ≈

Tryk på •= tasten for at skifte resultatet i displayet (når det er muligt) mellem brøk og decimaltal, eksakt kvadratrod og decimaltal samt eksakt pi og decimaltal

Eksempel

Resultat [2nd] [v-] 8 [enter] til/fra	18 212

(→ z)	18	DEG	2JŽ
	212*	2.82842	7125

Bemærk: • z er også tilgængelig til skift mellem talformater for værdier i funktionstabellens celler og i dataeditoren. Editorer, f.eks. i matrix-, vektor- og systemløserne, viser omskiftede celleværdier.

Seneste svar

2nd [answer]

Den sidst udførte indtastning på hovedskærmen gemmes i variablen **ans**. Denne variabel bevares i hukommelsen, selv når lommeregneren slukkes. Sådan hentes værdien **ans**:

- Tryk på 2nd [answer] (ans vises på skærmen), eller
- Tryk på en operationstast ([+], -] og så videre) på de fleste redigeringslinjer som første del af en indtastning. **ans** og operatoren vises begge.

Eksempler

ans	3 🗵 3 enter	3*3	DEG	Ŷ
	× 3 enter	3*3 ans*3	DEG	9 27
	3 [2nd] [□√−] [2nd] [answer] enter]	3*3 ans*3 ∛ans	DEG	9 27 3

Bemærk: Variablen ans gemmes og indsættes med fuld nøjagtighed, dvs. 13 cifre.

Operationernes rækkefølge

Lommeregneren TI-30X Pro MathPrint[™] bruger EOS[™] (Equation Operating System) til at evaluere udtrykkene. For regneoperationer på samme niveau evaluerer EOS[™] udtrykkene fra venstre mod højre og i følgende rækkefølge:

nr. 1	Udtryk i parenteser.
nr. 2	Funktioner, der skal bruge en), og kommer før argumentet, f.eks. sin, log , og alle R∢>P - menupunkter.
nr. 3	Funktioner, der indtastes efter argumentet, f.eks. x^2 og angivelser af vinkelvisningen.

nr. 4	Potenser (^) og rødder (^x √). Bemærk: I Classic-tilstand evalueres potensopløftning fra venstre mod højre ved hjælp af <u>x</u> ⁻ -tasten. Udtrykket 2^3^2 evalueres som (2^3)^2 med resultatet 64.		
	2^3^2 64		
	I MathPrint [™] -tilstand evalueres eksponentieringen fra højre mod venstre ved hjælp af <u>x</u> [®] -tasten. Udtrykket 2^3^2 evalueres som 2^(3^2), med resultatet 512.		
	2 ^{3²} 512		
	Lommeregneren evaluerer udtryk, der indtastes med x^2 og $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, fra venstre mod højre i både Classic- og MathPrint TM -tilstand. Hvis du trykker på 3 x^2 x^2 , beregnes det som $(3^2)^2 = 81$.		
nr. 5	Negation (-).		
nr. 6	Brøker.		
nr. 7	Permutationer (nPr) og kombinationer (nCr).		
nr. 8	Multiplikation, implicit multiplikation, division samt vinkelindikator \angle .		
nr. 9	Addition og subtraktion.		
nr. 10	Logiske operatorer and, nand.		
nr. 11	Logiske operatorer or, xor, xnor .		
nr. 12	Omregninger som f.eks. ▶n/d+> Un/d, F4> D, ▶DMS.		
nr. 13	sto→		
nr. 14	enter evaluerer inputudtrykket.		

Bemærk: Slut på udtryk-operatorer og Base n-omregninger som f.eks. ▶Bin, vinkelomregning ▶DMS, ▶Pfactor, og omregning af komplekse tal ▶Polar og ▶Rectangle, er kun gyldige i hovedskærmen. De ignoreres i guider, funktionstabelvisning og dataeditorfunktioner, hvor udtryksresultatet, hvis det er gyldigt, vil blive vist uden omregning. Editorer, f.eks. i matrix-, vektor- og systemløserne, ignorerer disse slut på udtryk-operatorer på redigeringslinjen.

Bemærk: Brug parenteser til tydeligt at angive den operationsrækkefølge, du forventer til din udtryksindtastning. Om nødvendigt kan parenteserne bruges til at tilsidesætte den operationsrækkefølge, algoritmerne i lommeregneren følger. Hvis resultatet ikke er som forventet, skal du kontrollere, hvordan udtrykket er indtastet, og tilføje parenteser efter behov.

Eksempler

+ x ÷ ⁻	60 🕂 5 🗙 (一) 12 enter	60+5* ⁻ 12 [™] Ó
(-)	1 + - 8 + 12 enter	1+ <i>-</i> 8+12 [™] ⁵
√ og +	[2nd [√ ⁻] 9 + 16 enter	√9+16 ^{№6} 5
()	4 × (2 + 3) enter	4*(2+3) ⁶⁶⁶ 20
() og +	4 (2 + 3) enter	4(2+3) [™] 2Ò́
^ og √	2nd [v] 3 x° 2 () + 4 x° 2 enter	√3 ² +4 ² 5
() og -	((() 3)) x^2 enter () 3 x^2 enter	(-3) ² 9 -3 ² -9

Slette og rette

2nd [quit]	Returnerer markøren til hovedskærmen.
	Afslutter hurtigt følgende applikationer: Evaluering af udtryk, Indstil operation, Funktionstabel, Dataeditor, Statistik, Fordelinger, Vektor, Matrix, Numerisk løser, Polynomiumsløser og Systemløser.
clear	Sletter en fejlmeddelelse.
	Sletter tegn i indtastningslinjen.
delete	Sletter tegnet ved markøren.
	Når markøren når slutningen af et udtryk, bevæger den sig tilbage og sletter.
2nd [insert]	Indsætter et tegn ved markøren.
2nd [clear var] 1	Rydder variablerne x, y, z, t, a, b, c, og d til deres

	standardværdi på 0. Eventuelle beregnede Stat Vars er ikke længere tilgængelige i menuen Stat Vars. Genberegn statistikfunktioner efter behov.
[2nd] [reset] 2	Nulstiller lommeregneren. Returnerer lommeregneren til standardindstillingerne og rydder hukommelsesvariabler, afventende operationer, alle poster i historikken samt statistiske data, eventuelle gemte operationer og ans .

Hukommelse og lagrede variabler

 x_{abcd}^{yzt} sto+2nd[recall]2nd[clear var]

Lommeregneren TI-30X Pro MathPrint™ har 8 hukommelsesvariabler –**x**, **y**, **z**, **t**, **a**, **b**, **c** og **d**. Du kan gemme følgende i en hukommelsesvariabel:

- Reelle eller komplekse tal
- Udtryksresultater
- Beregninger fra forskellige applikationer, f.eks. Fordelinger
- Dataeditorcelleværdier (gemt fra redigeringslinjen)

Lommeregnerfunktioner, der bruger variabler, bruger de værdier, du gemmer.

Med sto→ kan du lagre værdier i variabler. Tryk på sto→ for at lagre en variabel, og tryk på ﷺ for at vælge den variabel, der skal lagres. Tryk på enter for at lagre værdien i den valgte variabel Hvis denne variabel i forvejen har en værdi, erstattes den pågældende værdi af den nye

 x_{abcd}^{yzz} er en multitryktast, der skifter mellem variabelnavnene **x**, **y**, **z**, **t**, **a**, **b**, **c** og **d**. Du kan også bruge x_{abcd}^{yzz} til at hente de lagrede værdier for disse variabler. Variablens navn indsættes i den aktuelle indtastning, men værdien, der er tildelt variablen, anvendes til at evaluere udtrykket Du kan indtaste to eller flere variabler efter hinanden ved at trykke på () efter hver variabel.

[2nd] [recall] henter værdierne i variablerne. Tryk på [2nd] [recall] for at få vist en menu med variabler og deres lagrede værdier. Marker den variabel, du vil hente, og tryk på [enter]. Den værdi, der er tildelt variablen, indsættes i den aktuelle indtastning og bruges til at evaluere udtrykket.

[2nd] [clear var] sletter variabelværdier. Tryk på [2nd] [clear var], og vælg **1:Yes** (1: Ja) for at slette alle variabelværdier. Eventuelle beregnede Stat Vars er ikke længere tilgængelige i menuen Stat Vars. Genberegn statistikfunktioner efter behov.

Eksempler

Start med ryddet skærm	[2nd] [quit] [clear]	DEG	•
Slet var	[2nd] [clear var] 1 (Vælger Yes (Ja))	CLEAR VAR 1. Yes 2:No	
Gem	15 sto $\rightarrow x_{abcd}^{yzt}$	15→ <i>x</i>	* •
	enter	15→x	15
Hente	[2nd] [recall]	RECALLE VAR 1. x=15 2:y=0 3↓z=0	
	[enter] [x ²] [enter]	15→x 15 ²	15 225
	$[\text{sto} \rightarrow [x_{abcd}^{++}], x_{abcd}^{++}]$	15→x 15² ans→y	15 225
	enter	15→x 15² ans→y	15 225 225
	$\begin{bmatrix} x_{abcd}^{yz1} \\ x_{abcd}^{yz1} \end{bmatrix}$	בס י ת 15 ² ans≁y y	13 225 225
	enter 🔆 4 enter	15' ans≁y y ans∕4	225 225 225 56.25

Dpgave

l en grusgrav er der åbnet to nye udgravningssteder. Det første måler 350 meter gange 560 meter, det andet måler 340 meter gange 610 meter. Hvor stor en grusmængde skal selskabet udvinde af hver udgravning for at opnå en dybde på 150 meter? For at opnå en dybde på 210 meter? Vis resultaterne i teknisk notation.

mode \textcircled{O} \textcircled{O} enter Clear 350 \times 560 sto+ x_{abcd}^{yzt} enter	350*560 ^{₩8006} 350*560 350*560
340 \times 610 sto \rightarrow $\left[x_{abcd}^{yzt} \ x_{abcd}^{yzt} \right]$ enter	350*560→x 196£3 340*610→y 207.4E3
[clear] 150 ⊠ [nccall]	RECHLEVER 196e3 2:y=207.4e3 3↓z=0e0
enter enter	150*196000 29.4e6
Clear 210 🛛 [ncall] [enter] [enter]	210*196000 41.16E6

Til den første udgravning skal firmaet udvinde 29,4 millioner kubikmeter for at opnå en dybde på 150 meter og 41,16 millioner kubikmeter for at opnå en dybde på 210 meter

Clear 150 \times x_{abcd}^{yzt} enter	150*у	31.11E6
210 \times x_{abcd}^{yzt} x_{abcd}^{yzt} enter	150*у 210*у	31.11E6 43.554E6

Til den anden udgravning skal firmaet udvinde 31,11 millioner kubikmeter for at opnå en dybde på 150 meter og 43,554 millioner kubikmeter for at opnå en dybde på 210 meter

Matematikfunktioner

Dette afsnit indeholder oplysninger om brug af lommeregnerens matematikfunktioner, f.eks. trigonometri, statistik og sandsynlighedsregning.

Brøker

 $\begin{array}{c} \hline \\ \hline \\ \end{array} \qquad \begin{array}{c} 2nd \begin{bmatrix} \Box \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} math \end{array} 1 \qquad \begin{array}{c} 2nd \begin{bmatrix} f \checkmark \flat d \end{bmatrix} \end{array}$

Brøker med \mathbb{B} kan omfatte reelle og komplekse tal, operationstaster (+, \times osv.) og de fleste funktionstaster (x^2 , 2nd [%] osv.).

I Classic-tilstand eller classic-indtastninger i MathPrint[™]-tilstand vises brøkstregen som en tyk linje, f.eks. a.e. Brug parenteser til tydeligt at angive den ønskede rækkefølge. Reglerne for operationernes rækkefølge gælder, men du kan styre, hvordan et udtryk evalueres, ved at placere parenteser korrekt i dine input.

Brøkresultater

- Brøkresultater forkortes automatisk, og outputtet gives som uægte brøk.
- Hvis du ønsker output med blandede tal, skal du bruge ▶n/d↔ Un/d-omregninger til blandede tal i slutningen af inputudtrykket. Denne funktion findes i math 1: ▶n/d↔ Un/d.
- Brøkresultater opnås, når den beregnede værdi kan vises inden for grænserne af det brøkformat, som lommeregneren understøtter, og der ikke er indtastet en decimalværdi i inputudtrykket.
- Hvis decimaltal bruges eller beregnes i en brøks tæller eller nævner, vises resultatet som et decimaltal. Hvis du indtaster et decimaltal, gennemtvinger du, at resultatet vises i decimalformat.
- Brug [2nd] [f ↔ d] (over (→ =)) på resultater for at forsøge at omregne brøker til decimaltal inden for de brøkvisningsgrænser, denne numeriske lommeregner kan tilbyde.

Blandede tal og omregninger

- 2nd [□=] indsætter et blandet tal. Tryk på piltasterne for at skifte mellem enhed, tæller og nævner.
- math 1 konverterer mellem simple brøker og blandede tal (▶n/d↔Un/d).
- 2nd [f > d] konverterer resultater mellem brøker og decimaltal.

MathPrint[™]-indtastning

- Tryk på ⊙ eller ⊙ for at flytte markøren mellem tælleren og nævneren.
- Hvis du trykker på 🗄 før eller efter tal eller funktioner, kan det forudfylde tælleren med dele af dit udtryk. Hold øje med skærmen, mens du trykker på tasterne, for at sikre, at du indtaster udtrykket med den nødvendige nøjagtighed.

På hovedskærmen

- Hvis du vil indsætte en tidligere indtastning fra historikken i tælleren eller den blandede talenhed, skal du placere markøren i tælleren eller enheden, trykke på for at rulle til den ønskede indtastning og derefter trykke på enter indtastningen i tælleren eller enheden.
- Hvis du vil indsætte en tidligere indtastning fra historikken i nævneren, skal du placere markøren i nævneren og trykke på 2nd ext{or} for at springe til historikken. Tryk på ext{or} for at rulle til den ønskede indtastning, og tryk derefter på enter for at indsætte indtastningen i nævneren.

Beregning af dit udtryk

 Når du trykker på enter for at evaluere inputudtrykket, vises der muligvis parenteser for tydeligt at angive, hvordan det blev fortolket og beregnet af lommeregneren. Hvis det ikke er som forventet, skal du kopiere inputudtrykket og redigere det efter behov.

Classic-tilstand og Classic-indtastning

 Hvis markøren er på en classic-indtastningsplacering, skal du indtaste tællerudtrykket i parentes og trykke på 🗄 for at få vist den tykke brøkstreg og derefter indtaste tællerudtrykket, også i parentes, for det resultat, der skal beregnes, som du forventer for din opgave.

n/d, Un/d	\square	$\frac{\frac{3}{4}+\left(1\frac{7}{12}\right)}{\frac{7}{3}}$
▶n/d4▶Un/d	9 🗄 2 () (math 1 enter	⁹ / ₂ ▶ n⁄d•Un∕d 4 ¹ / ₂
f 4 ▶d	4 [2nd [□=] 1 2 ④ 2nd [f • ► d] enter	4 ¹ / ₂ ▶ f • d 4.5
Eksempel	☐ 1.2 + 1.3 ⊙ 4 enter Bemærk: Resultatet er et decimaltal, fordi der blev brugt decimaltal i brøken.	1.2+1.3 4 0.625
Eksempel	$ \begin{array}{c} \hline \bigcirc 5 + 2nd [] 5 \\ x^2 - 4 (1) (6) \\ \hline \odot 2 (1) enter \end{array} $	-5+\5 ² -4(1)(6) 2(1) -2

Eksempel i MathPrint™-tilstand

Eksempler i Classic-tilstand

n/d, Un/d	3 ⊕ 4 + 1 2nd [□⊕] 7 ⊕ 12 enter	3/4+17/12 7/3
▶n/d4▶Un/d	9 🗄 2 (math) 1 (enter)	9∕2) n∕d+Ůn∕d 4⊔1∕2
f�d	4 [2nd] [□∄] 1 [∄] 2 [2nd] [f ◀▶ d] [enter]	4⊔1∕2) f vd 4.5
Parenteser	(2 x² - 1) ≞ (2 x² + 1) enter	(2 ² -1)/(2 ² +1) 3/5

Procentværdier

2nd [%]

Du udfører beregninger med procenter ved at trykke på [m] [%] efter indtastning af procentværdien.

Eksempel

2 [2nd [%] × 150 enter	2%*150	DEG	ĵ.

Opgave

Et mineselskab udvinder 5000 tons malm med en metalkoncentration på 3% og 7300 tons med en koncentration på 2,3%. Hvad er den samlede opnåede metalmængde ud fra disse udvindingstal?

Hvis et ton metal har en værdi på 280 valutaenheder, hvad er så den samlede værdi af det udvundne metal?

3 [md] [%] × 5000 enter	3%*5000 ^{***} 150
+ 2.3 [2nd [%] × 7300 [enter	3%*5000 150 ans+2.3%*7300 317.9

× 280 enter	2245000	
	ans+2.3%	*7300
		317.9
	<u>ans+200</u>	07012

De to udvundne malmmængder udgør i alt 317,9 tons metal til en samlet værdi af 89012 valutaenheder.

Videnskabelig notation [EE]

EE

[EE] er en genvejstast til indtastning af et tal i videnskabeligt notationsformat. Et tal som (1.2 x 10⁻⁴) indtastes på lommeregneren som tallet 1.2E-4.

Eksempel

2 [EE] 5 [enter] Bemærk: Indtaster (2 x 10 ⁵) ved hjælp af lommeregnerens E-notation.	2e5 [™] 200000
mode	SCI DEG DICIIE RADIAN GRADIAN NORMAL SCOL ENG ILICII 0 1 2 3 4 5 6 7 8 9 RICII 0+bi r∠0
[clear] [enter]	2e5 ²⁰⁰⁰⁰⁰ 2e5 2e5
(clear) 4 [EE] 2 ⊠ 6 [EE] (−−) 1 [enter]	4e2*6e ⁻¹ 2.4e2
 B 5 EE 3 ⊙ 2 EE 4 enter 2nd [answer] 2nd [f < ► d] 	5 <u>E3</u> 2E4 ans▶f+d 2.5E ⁻¹

Eksempel

Lærebogsopgave	
clear	(5*10')/(2*10') 2.5e-1
(5 × 10 x [□] 3 () ; ; (2 × 10 x [□]	
4 ()) enter	
Ved at bruge EE	5F3/2F4 2.5F-1
clear	
5 EE 3 ÷ 2 EE 4 enter	

Potenser, rødder og reciprokke værdier

<i>x</i> ²	Beregner kvadratet på et tal.
x□	Opløfter et tal til den angivne potens. Brug
2nd [√-]	Beregner kvadratroden af et ikke-negativt tal. I tilstande for komplekse tal beregner a+bi og r $\angle \theta$ kvadratroden af en negativ reel værdi.
2nd ["√-]	Beregner denxte rod af et ikke-negativt tal og et ulige heltalsrod af et negativt tal.
[音]	Inverterer den indtastede værdi som 1/x.

Eksempler

$5 x^2 + 4 x^2 2 + 1$	5 ² +4 ²⁺¹	DEG	89
10 x ⁻ () 2 enter	10 ⁻²	DEG	1 100
[2nd] [√ [−]] 49 [enter]	J49	DEG	7
2nd [√] 3 [x ²] + 2 [x ⁿ] 4 [enter]	√3 ² +2 ⁴	DEG	5
2nd [√] 3 x² + 2 x° 4 enter 6 2nd [°√] 64 enter	√3²+2 ⁴ ⁴√64	DEG	** 5 ** 2

Pi (symbolet Pi)

 π_{i}^{e} (multitryktast)

 $\pi \approx 3.14159265359$ for beregninger.

 $\pi \approx 3.141592654$ for visning i Float-tilstand.

Eksempel

π	2 \times $\overline{\pi_i^{e}}$ enter	2*π	^{DEG} 2π
	₩ 2	2*π 2π••	2π 6.283185307

Dpgave

Hvad er arealet af en cirkel, hvis radius er 12 cm?

Husk: A = $\pi \times r^2$

$ \begin{array}{c} \hline \pi_i^{\text{e}} \\ \hline \end{array} \\ \hline \mathbf{x}^{\text{e}} \\ \hline \mathbf{x}^{\text{e}} \end{array} $ enter	π*12 ² 144π 144π↔
	452.3893421

Cirklens areal er ca. 144 π kvadratcm. Cirklens areal er ca. 452,4 kvadratcm, når den afrundes til en decimal.

Math

math MATH

math viser menuen MATH (Matematik):

1:▶n/d4▶Un/d	Konverterer mellem simple brøker og blandede tal.
2:lcm(Mindste fælles multiplum
	Syntaks: Icm(værdiA,værdiB)
3:gcd(Største fælles divisor
	Syntaks: gcd(værdiA,værdiB)
4:▶Pfactor	Primfaktorer
5:sum(Summation
	Syntaks: sum(<i>udtryk</i> , <i>variabel</i> , <i>nedre</i> , <i>øvre</i>)
	(Classic-tilstandssyntaks)
6:prod(Produkt
	Syntaks: prod(<i>udtryk,variabel,nedre,øvre</i>)
	(Classic-tilstandssyntaks)
7:nDeriv(Numerisk differentialkvotient på et punkt med valgfrit toleranceargument, ε, når kommandoen bruges i Classic-tilstand, classic-indtastning og i MathPrint™-tilstand.

	Syntaks: nDeriv(<i>udtryk</i> , <i>variabel</i> , <i>punkt</i> [, <i>tolerance</i>]) (Classic-tilstandssyntaks)
8:fnInt(Numerisk integral over et interval med valgfrit toleranceargument, ε, når kommandoen bruges i Classic-tilstand, classic-indtastning og i MathPrint™-tilstand.
	Syntaks: fnint(<i>udtryk,variabel,nedre,øvre</i> [<i>,tolerance</i>]) (Classic-tilstandssyntaks)

Eksempler

▶n/d4▶Un/d	9 🗄 2 () [math] 1 [enter	⁹ / ₂ ► n⁄d•Un⁄d 4 ¹ / ₂
lcm((math) 2 6 [2nd] [,] 9 () (enter)	lcm(6,9) ** 18
gcd([math] 3 18 [2nd] [,] 33 [) [enter]	9cd(18,33) 3
▶Pfactor	253 (math) 4 (enter	253)Pfactor 11*23
sum($ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sum_{x=1}^{4} (x*2)$ 20
prod(math 6 1 (•) 5 (•) 1 (•) x_{abcd}^{yet} (•) (•) (•) (•) (•)	$\begin{bmatrix} 5 \\ \Pi \\ \chi = 1 \begin{pmatrix} \frac{1}{\chi} \end{pmatrix} & \frac{1}{120} \end{bmatrix}$

Bemærk: Se Numerisk differentialkvotient, nDeriv(, og Numerisk integral, fnInt(i Matematikfunktioner vedrørende eksempler og flere oplysninger.

Talfunktioner

math NUM

math () viser NUM-menuen:

1:abs(

Absolut værdi

	Syntaks: abs(værdi)
2:round(Afrundet værdi
	Syntaks: round(værdi,#decimaler)
3:iPart(Heltalsdelen af et tal
	Syntaks: iPart(værdi)
4:fPart(Brøkdelen af et tal
	Syntaks: fPart(værdi)
5:int(Største heltal, der er ≤ tallet
	Syntaks: int(værdi)
6:min(Mindst to tal
	Syntaks: min(værdiA,værdiB)
7:max(Højst to tal
	Syntaks: max(værdiA,værdiB)
8:mod(Modulo (rest af første tal ÷ andet tal)
	Syntaks: mod(dividend,divisor)

Eksempler

abs([math) 1 () [2nd [√-] 5 [enter]	1-121 12
round(math) 2 1.245 2nd [,] 1) enter (a) (a) enter (b) (c) (c) (c)	round(1.245,1) 1.2 round(1.255,1)
	 (•) (•)	1.3
iPart(4.9 sto $\rightarrow x_{abcd}^{yzt}$ enter	$4_{2}9 \rightarrow \chi$ $4_{2}^{0}9$
fPart(math () 3 x_{abcd}^{yzt} () enter	iPart(x) 4
	$[math] () 4 \left[x_{abcd}^{yzt} \right])$	r = r = r = 1
	enter	
int(math 🕦 5	$i_{\text{D}} + (-5, 6) + \tilde{6}$
	() 5.6) enter	
min(math 🕦 6	min(4, -5) -5
max(4 2nd [,] (-) 5) enter	max(.6,.7) 0.7
	math 🕑 7	
	.6 [2nd [,] .7) enter	

mod(

math 🕦 8
17 [2nd] [,] 12) enter
enter () () 6 enter

nod(17,12) nod(17,16)) 5 1

Vinkler

math DMS

math () () viser DMS-menuen:

1:°	Angiver vinkelvisningen i grader (°).
2:'	Angiver vinkelvisningen i minutter (').
3:″	Angiver vinkelvisningen i sekunder (").
4:r	Angiver en vinkel i radian.
5:g	Angiver en vinkel i nygrader.
6:▶DMS	Konverterer vinkel fra decimalgrader til grader, minutter og sekunder.

Du kan vælge en vinkeltilstand på tilstandsskærmen. Du kan vælge mellem DEGREE (GRADER) (standard), RADIAN og GRADIAN (NYGRADER). Indtastninger fortolkes og resultater vises i overensstemmelse med vinkeltilstanden uden behov for at indtaste en angivelse af vinkelvisningen.

Bemærk: Du kan også omregne mellem en rektangulær koordinatform (R) og polær koordinatform (P). (Yderligere oplysninger findes i Rektangulær til polær).

Eksempler

RADIAN	mode () enter	DEGREE [3:10](3)] GRADIAN NORMAL SCI ENG ILOAN 0 1 2 3 4 5 6 7 8 9 Ran 0 4+bi r∠0
	Clear	MATH NUM DMS R++P 1€: 2:' 3↓"
	1)) enter	sin(30°) 1/2
DEGREE (GRADER)	[mode] [enter]	DIGTIGIA RADIAN NDRMINI SCI ENG SIDANI 0 1 2 3 4 5 6 7 8 9 RIGTI 0+bi r∠0

	Clear 2 π_i^e math \bullet enter	sin(30°) <u>1</u> 2π ^r 360
▶DMS	1.5 math () () 6 enter	sin(30°) [™] 1/2 2π ^r 360 1.5≻DMS 1°30'0"

Dpgave

To hosliggende vinkler er henholdsvis $12^{\circ} 31' 45''$ og $26^{\circ} 54' 38''$. Læg de to vinkler sammen og vis resultatet i DMS-format. Afrund resultaterne til to decimaler.

clear mode \odot \odot () () () enter	PIA DICINE NORMAN SCI ENG FLOAT 0 1 2 3 4 5 6 7 8 9 REAL 0 4 bi r∠0
Clear 12 math () ()	MATH NUM MS R↔P 1990 2:' 3↓"
1 31 math () () 2 45 math () () 3 (+) 26 math () () 1 54 math () () 2 38 math () () 3 enter	12° [™] 31'45"+26°54) 39.44
math () () 6 enter	12 [®] 31'45 [™] +26°54) 39.44 ans≻DMS 39°26'23"

Resultatet er 39 grader, 26 minutter og 23 sekunder.

Opgave

Det er kendt, at $30^{\circ} = \pi / 6$ radianer. I standardtilstanden grader skal du finde sinus af 30° . Indstil lommeregneren til radiantilstand, og beregn sinus af $\pi / 6$ radianer.

Noter

- Tryk på clear for at rydde skærmen mellem opgaverne.
- Indikatorrækken viser kun tilstandsindstillingen DEG eller RAD for den aktuelle beregning.

Clear Sin-1 30) enter	sin(30)	DEG	1 2
$\begin{array}{c} \hline mode () enter \\ \hline m \\ m \\$	sin(30) sin(#)	RAD	1212

Behold radiantilstanden på lommeregneren, og beregn sinus af 30°. Skift lommeregneren til gradtilstand og find sinus af π / 6 radianer.

(clear) imin 30 (math) () () enter () enter (mode) enter (clear) (imin 77) imin 6 () (imit) () (imit) 4 imin 77) () enter	$\sin\left(\frac{\pi}{6}r\right)^{0}$
---	---------------------------------------

Rektangulær til polær

math R4 ₽

math () viser $\mathbf{R} \rightarrow \mathbf{P}$ -menuen, som indeholder funktioner til konvertering af koordinater mellem rektangulært (x,y) og polært (r, θ) format. Indstil vinkeltilstanden efter behov, før du starter beregningerne

1:P ▶ Rx(Konverterer polær til rektangulær og viser x. Syntaks: P ▶ Rx(<i>r</i> ,θ)
2:P ▶ Ry(Konverterer polær til rektangulær og viser y. Syntaks: P ▶ Ry (<i>r</i> ,θ)
3:R ▶ Pr(Omregner rektangulær til polær og viser r. Syntaks: R ▶ Pr(<i>x</i> , <i>y</i>)
4:R ▶ Pθ(Omregner rektangulær til polær og viser θ. Syntaks: R ▶ P θ(x,y)

Eksempel

Omregn polære koordinater (r, θ) = (5,30) til rektangulære koordinater. Omregn derefter rektangulære koordinater (x,y) = (3,4) til polære koordinater. Afrund decimaltalresultaterne til én decimal.

R ↔ P Clear mode ⊙ ⊙ () () enter	113 113 113 113 113 113 113 113 113 113
-------------------------------------	---

Clear (math) () 1 5 (2nd) [,] 30 () enter (math) () 2 5 (2nd) [,] 30 () enter	P▶R×(5,30) P▶Rч(5,30)	5 <u>13</u> 2 5 <u>2</u>
math ④ 3 3 [2nd] [-] 4 math ④ 4 3 [2nd] [-] 4	™ DEG R)Pr(3,4) R)P0(3,4)	5.0 53.1

Konvertering af (r, θ) = (5,30) giver (x,y) = $(\frac{5\sqrt{3}}{2}, \frac{5}{2})$, og (x,y) = (3,4) giver (r, θ) = (5.0,53.1).

Trigonometri

sin-1 cos-1 tan-1 (multitryktaster)

Hvis du trykker på en af disse multitryktaster flere gange, får du adgang til den tilsvarende trigonometriske eller inverse trigonometriske funktion. Indstil vinkeltilstand – grader eller radian – inden din beregning.

Eksempel i tilstanden Grader

tan	Clear mode enter Clear Imn-1 45 Imn-1 enter	tan(45) í
tan ⁻¹	Clear ^{tan} , ^{tan} , 1) enter	tan ⁻¹ (1) 45
COS	[clear] 5 ⊠ ∵ 60) enter	5*cos(60) 5

Eksempel i radiantilstand

tan	Clear mode () enter (clear) $[tan-]$ $[\pi^{a}_{i}]$ $[tan-]$ $[\pi^{a}_{i}]$ $[tan-]$ $[\pi^{a}_{i}]$ $[tan-]$ $[tan-$	tan(ቺ)	RAD	1
tan ⁻¹	Clear tan, tan, 1) enter	tan ⁻¹ (1)	RAD	<u>म</u> म

	◆ ≈	tan ⁻¹ (1) म म् म् • 0.78539816	ř I 3
cos	Clear 5 ≍ π , π , □ 4 ()) enter	5*cos(<u></u> #) <u>5√2</u>	Y1
	[clear] (+ ≈	5 <u>√2</u> ↔ 3.53553390	6

Opgave

Find vinkel A i nedenstående retvinklede trekant. Beregn vinkel B og længden på hypotenusen c. Længderne er angivet i meter. Afrund resultaterne til en decimal.

Husk:

$$\tan A = \frac{7}{3}$$
 Derfor er $m \angle A = \tan^{-1}\left(\frac{7}{3}\right)$

 $m \angle A + m \angle B + 90^\circ = 180^\circ$ Derfor er $m \angle B = 90^\circ - m \angle A$

Bemærk: Indstil tilstanden til DEGREE (GRADER) og fast 1 decimal til beregningerne.

mode enter 🕤 🕤 🕢 (i) enter	DIGINII ACTION NDAMAI SCI ENG FLOAT 0 12 2 3 4 5 6 7 8 9 RIGU α+bi r∠0
[an-] [an-] 7 □ 3) [enter]	tan¹(<u>?</u>) 66.8
90 – 2nd [answer] enter	tan ⁻¹ (73) 66.8 90-ans 23.2

2nd [v] 3 x ² + 7 x ² enter	tan ⁻¹ (⁴ / ₃) 66.8 90-ans 23.2 √3 ² +7 ² √58
◆ <i>≈</i>	90-ans 23.2 3 ² +7 ² √58 √58 ↔ 7.6
mode enter 交 🕤 🕦 () enter	DIGTATA DIGTATA NORMAT SCI ENG FLOAT 0 0 2 3 4 5 6 7 8 9 RIGT 0+bi r∠0

Med en decimals nøjagtighed er vinkel A=66.8°, vinkel B = 23.2° , og længden af hypotenusen er 7.6 meter.

Hyperbolske funktioner

sin-1 cos-1 tan-1 (multitryktaster)

Hvis du trykker på en af disse multitryktaster flere gange, får du adgang til den tilsvarende hyperbolske eller inverse hyperbolske funktion. Vinkeltilstande påvirker ikke hyperbolske beregninger.

Eksempel

Indstil flydende decimal	mode 🕤 🕤 enter	DIGINE RADIAN GRADIAN NDRMAT SCI ENG ILOAN 0 1 2 3 4 5 6 7 8 9 RIGA 0 4+bi r∠0
	Clear	sinh(5)+2 76.20321058
	$ \textcircled{O} \bigoplus \text{ enter } 2nd \bigoplus \underset{sin}{\overset{\text{sin}}{\underset{sin}{\text{sin}}}} \overset{\text{sin}}{\underset{sin}{\overset{\text{sin}}{\underset{sin}{\text{sin}}}} \text{ enter } $	sinh(5)+2 76.20321058 sinh ¹ (5)+2 4.312438341

Logaritmer og eksponentielle funktioner.

In log e⁻ 10⁻ (multitryktaster)

In log indsætter den naturlige logaritme, In, af et tal med grundtal e. Funktionens argument er In(*værdi*).

e \approx 2.718281828459 for beregninger.

 $e \approx 2.718281828$ for visning i Float-tilstand.

In log In log indsætter den almindelige logaritme, \log_{10} , af et tal. Funktionens argument er $\log(vardi)$.

<u>In log</u> <u>In log</u> indsætter logBASE-funktionen som en MathPrint[™]-skabelon. Når det er nødvendigt, er argumenterne i classic-indtastning **logBASE**(*værdi,base*).

 $e^{-10^{-1}}$ indsætter *e* som grundtal i en potens.

e⁻⁻10⁻⁻ e⁻⁻10⁻⁻ indsætter 10 som grundtal i en potens.

Eksempler

log	[In log] [In log] 1 [)] enter	lo9(1) 0
In	[In log 5]) 🗙 2 enter	log(1) 0 0 ln(5)*2 3.218875825
10 [□]	clear $e^{n} 10^{n}$ $e^{n} 10^{n}$ In log In log 2) enter In log In log $e^{n} 10^{n}$ $e^{n} 10^{n}$ 5) enter	10 ¹⁰³⁽²⁾ 2 109(10 ⁵) 5
e□	[clear] [e ⁿ 10 ⁿ] .5	e ^{.5} 1.648721271

Numerisk differentialkvotient

TI-30X Pro MathPrint[™] beregner den (omtrentlige) numeriske differentialkvotient af et udtryk i et punkt med en given tolerance for den numeriske metode. (Se afsnittet **Om den numeriske differentialkvotient i et punkt** for at få flere oplysninger).

MathPrint[™]-tilstand

2nd $[4/dx\Box]$ indsætter skabelonen for den numeriske differentialkvotient fra tastaturet for at beregne den numeriske differentialkvotient med standardtolerancen ε er 1E-5.

Eksempel

$\begin{array}{c c} 2nd \left[\frac{d}{dx} \Box \right] & 2nd \left[\frac{d}{dx} \Box \right] \\ x_{abcd}^{zzi} & x^2 + 5 x_{abcd}^{yzi} & 0 & 0 \\ \hline \end{array} \qquad \qquad$	1 3
$\frac{\mathbf{x}_{abid}^{yz1}}{\mathbf{x}_{abid}^{yz1}} \mathbf{x}^{2} + 5 \mathbf{x}_{abid}^{yz1} \mathbf{x}^{2} \mathbf{x}^{z} + 5 \mathbf{x} \mathbf{J}_{\mathbf{x}}$	-1

Hvis du vil ændre standardtolerancen, ε , og observere, hvilken rolle tolerancen spiller i den numeriske løsning, skal du indsætte den numeriske differentialkvotient fra menuplaceringen, [math] MATH 7:nDeriv(, hvor skabelonen for den numeriske

differentialkvotient indsættes med mulighed for at ændre tolerancen efter behov, så resultatet af den numeriske differentialkvotient kan undersøges.

Eksempel

math MATH 7:nDeriv($\begin{array}{c c} \text{math} & 7 \begin{array}{c} x_{abcd}^{yzt} \\ x_{abcd}^{zz} \end{array} \begin{array}{c} 7 \end{array} \end{array} \begin{array}{c} 7 \end{array} \begin{array}{c} 7 \end{array} \end{array} \begin{array}{c} 7 \end{array} \begin{array}{c} 7 \end{array} \begin{array}{c} 7 \end{array} \end{array} \begin{array}{c} 7 \end{array} \begin{array}{c} 7 \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 7 \end{array} \end{array} \begin{array}{c} 7 \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 7 \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 7 \end{array} \end{array}$	$\frac{\frac{d}{dx}(x^2+5x) _{x=-1,\epsilon=1E-5}}{3}$
med valgfri		
tolerance		

Classic-tilstand og -indtastning

I Classic-tilstand eller på classic-redigeringslinjer indsættes kommandoen **nDeriv(** fra tastaturet eller menuen **MATH (Matematik)**.

Syntaks: **nDeriv(***udtryk*,*variabel*,*punkt*[,*tolerance*]), hvor *tolerance* er valgfri, og standarden ε er 1E-5.

Eksempel

Om den numeriske differentialkvotient i et punkt

Kommandoen for den numeriske differentialkvotient i et punkt, **nDeriv(** eller d/dx, benytter den symmetriske differenskvotientmetode. Denne metode tilnærmer sig den numeriske differentialkvotient i et bestemt punkt som hældningen på sekanten omkring punktet.

$$f'(x) = \frac{f(x+\varepsilon) - f(x-\varepsilon)}{2\varepsilon}$$

Når ϵ bliver mindre, bliver tilnærmelsen normalt mere nøjagtig i forhold til hældningen på tangentlinjen i det pågældende punkt x.

- På grund af den metode, der benyttes til at beregne numeriske differentialkvotient, kan lommeregneren fejlagtigt give en differentialkvotient i et punkt, hvor funktionen ikke er differentiabel.
- Sørg for altid at vide noget om funktionens adfærd nær punktet ved at bruge en tabel over værdier nær punktet (eller en graf for funktionen).

Opgave

Find hældningen på tangentlinjen for funktionen $f(x) = x^2 - 4x \text{ ved } x = 2$. Hvad lægger du mærke til?

Numerisk integral

TI-30X Pro MathPrint^M beregner (omtrentligt) det numeriske integral af et udtryk med hensyn til variablen x med en nedre grænse, en øvre grænse og en tolerance for den numeriske metode.

Ø

MathPrint[™]-tilstand

2nd [$\exists \Box dx$] indsætter skabelonen for det numeriske integral fra tastaturet for at beregne det numeriske integral med standardtolerancen ϵ er 1E-5.

Eksempel i vinkeltilstanden RADIAN

Hvis du vil ændre standardtolerancen, ε , og observere, hvilken rolle tolerance spiller i den numeriske løsning, skal du indsætte det numeriske integral fra menuplaceringen, (math) MATH 8:fnlnt(, hvor skabelonen for det numeriske integral indsættes med mulighed for at ændre tolerancen efter behov, så resultatet af det numeriske integral kan undersøges.

Eksempel vinkeltilstanden DEGREE (GRADER)

Classic-tilstand og -indtastning

I Classic-tilstand eller på classic-redigeringslinjer indsættes kommandoen fnint(fra tastaturet eller menuen MATH (Matematik).

Syntaks: fnlnt(*udtryk*,*variabel*,*øvre*,*nedre*[,*tolerance*]), hvor *tolerance* er valgfri, og standarden ε er 1E-5.

Eksempel

2nd $\left[\int_{\Box}^{\Box} \Box dx\right]$	2nd $\left[\int_{-}^{n}\Box dx\right]$	fpIpt(~^5,~,0,3)
eller	x_{abcd}^{yzt} x^{\Box} 5 2nd \cdot	121.5
math	x_{abcd}^{yzt} 2nd .0 2nd .3)	
MATH	enter	
8:fnInt(

Opgave

Find området under kurven $f(x) = -x^2+4$ på x-intervallerne fra -2 til 0 og derefter fra 0 til 2. Hvad lægger du mærke til ved resultaterne? Hvad kan du sige om denne funktions graf?

Bemærk, at de to områder er ens. Fordi dette er en parabel med toppunktet ved (0,4) og nuller ved (-2,0) og (2,0), kan du se, at de symmetriske områder er ens.

Statistik, regressioner og fordelinger

data 2nd [stat-reg/distr]

Med data kan du indtaste og redigere datalisterne. (Se afsnittet Dataeditor).

[2nd [stat-reg/distr] viser STAT-REG-menuen, som indeholder følgende valg:

Noter:

- Regressioner gemmer regressionsoplysningerne, sammen med 2-Var-statistikken for dataene, i StatVars (menupunkt 1).
- En regression kan gemmes i enten f(x) eller g(x). Regressionskoefficienterne vises med komplet nøjagtighed.

Vigtig note om resultater: Mange af regressionsligningerne deler samme variabler a, b, c og d. Hvis du udfører en regressionsberegning, gemmes regressionsberegningen og 2-Var-statistikken for de pågældende data i **StatVars**-menuen, indtil den næste statistik- eller regressionsberegning. Resultaterne skal fortolkes baseret på, hvilken type statistik- eller regressionsberegning der er udført senest. For at gøre det nemmere at fortolke korrekt minder titellinjen om, hvilken beregning der er udført senest.

1:StatVars	Viser en sekundær menu med de senest beregnede statistiske resultatvariabler. Brug ⊙ og ⊙ til at finde den ønskede variabel, og tryk på enter for at markere den. Hvis du markerer dette valg, før du har beregnet 1-Var-statistik, 2-Var- statistik eller nogen af regressionerne, vises en påmindelse.
2:1-VAR STATS	Analyserer data fra 1 datasæt med 1 målt variabel, x. Der kan være medtaget frekvensdata.
3:2-VAR STATS	Analyserer parrede data fra 2 datasæt med 2 målte variabler – x , den uafhængige variabel, og y , den afhængige variabel. Der kan være medtaget hyppighedsdata. Bemærk: 2-Var Stats beregner også en lineær
	regression og udfylder de lineære regressionsresultater. Den viser værdier for a (hældning) og b (y-skæring). Den viser også værdier for r ² og r .
4:LinReg ax+b	Tilpasser ligningsmodellen y=ax+b til dataene med mindste kvadraters metode for mindst to datapunkter. Den viser værdier for a (hældning) og b (y-skæring). Den viser også værdier for r^2 og r .
5:PropReg ax	Tilpasser ligningsmodellen y=ax til dataene med mindste kvadraters metode for mindst et punkt. Den viser værdien for a. Understøtter data, der danner en lodret linje med undtagelse af alle 0- data.
6:RecipReg a/x+b	Tilpasser ligningsmodellen y=a/x+b til dataene med mindste kvadraters metode på lineariserede data for mindst to datapunkter. Den viser værdier for a og b . Den viser også værdier for r ² og r .
7:QuadraticReg	Tilpasser andengradspolynomiet $y=ax^2+bx+c$ til dataene. Den viser værdier for a , b og c . Den viser også en værdi for R ² . For tre datapunkter er ligningen en polynomietilpasning. For fire eller flere er den en polynomieregression. Mindst tre datapunkter er påkrævet.
8:CubicReg	Tilpasser tredjegradspolynomiet y=ax ³ +bx ² +cx+d til dataene. Den viser værdier for a , b , c , and d .

	Den viser også en værdi for R ² . For fire punkter er ligningen en polynomietilpasning. For fem eller flere er den en polynomieregression. Mindst fire punkter er påkrævet.
9:LnReg a+blnx	Tilpasser ligningsmodellen y=a+bln(x) til data med mindste kvadraters metode og transformerede værdier ln(x) og y Den viser værdier for a og b . Den viser også værdier for r^2 og r .
:PwrReg ax^b	Tilpasser ligningsmodellen y=ax ^b til data med mindste kvadraters metode og transformerede værdier ln(x) og ln(y) Den viser værdier for a og b . Den viser også værdier for r^2 og r .
:ExpReg ab ^x	Tilpasser ligningsmodellen y=ab ^x til data med mindste kvadraters metode og transformerede værdier x og ln(y). Den viser værdier for a og b . Den viser også værdier for r^2 og r .
:expReg ae^(bx)	Tilpasser ligningsmodellen y=a e^(bx) til dataene med mindste kvadraters metode på lineariserede data for mindst to datapunkter. Den viser værdier for a og b . Den viser også værdier for r ² og r .

[2nd] [stat-reg/distr] () viser **DISTR**-menuen, som indeholder følgende valg:

1:Normalpdf	Beregner sandsynlighedstæthedsfunktionen (pdf) for normalfordelingen ved en bestemt <i>x</i> -værdi. Standardindstillingerne er middelværdien <i>mu</i> =0 og standardafvigelsen <i>sigma</i> =1. Sandsynlighedstæthedsfunktionen (pdf) er: $f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0$
2:Normalcdf	Beregner den normale sandsynlighedsfordeling mellem <i>LOWERbnd</i> og <i>UPPERbnd</i> for den angivne middelværdi <i>mu</i> og standardafvigelsen <i>sigma</i> . Standarderne er <i>mu</i> =0, <i>sigma</i> =1, hvor <i>LOWERbnd</i> = ~1E99 og <i>UPPERbnd</i> = 1E99. Bemærk: ~1E99 til 1E99 repræsenterer ~uendelig til uendelig.
3:invNormal	Beregner den inverse kumulative normalfordelingsfunktion for et givet område under normalfordelingskurven angivet ved middelværdien mu og standardafvigelsen $sigma$. Den beregner den x -værdi, der er knyttet til et område til venstre for x -værdien. $0 \le areal \le 1$ skal være sandt. Standarderne er $areal=1$, $mu=0$ og $sigma=1$.
4:Binomialpdf	Beregner en sandsynlighed på x for den diskrete binomialfordeling med de angivne <i>numtrials</i> og sandsynligheden for succes (p) for hvert forsøg. x er et ikke-negativt heltal og kan indtastes med valgmulighederne SINGLE (Enkelt indtastning), LIST (Liste over indtastninger) eller ALL (Alle) (liste over sandsynligheder fra 0 til <i>numtrials</i> returneres). $0 \le p \le 1$ skal være sandt. Sandsynlighedstæthedsfunktionen (pdf) er: $f(x) = {n \choose x} p^x (1-p)^{n-x} = 0,1,,n$
---------------	---
5:Binomialcdf	Beregner den kumulerede sandsynlighed på x for den diskrete binomialfordeling med de angivne <i>numtrials</i> og sandsynlighed for succes (p) for hvert forsøg. x kan være et ikke-negativt heltal og kan indtastes med valgmulighederne SINGLE (Enkelt indtastning), LIST (Liste) eller ALL (Alle) (en liste over kumulerede sandsynligheder returneres). $0 \le p \le 1$ skal være sandt.
6:Poissonpdf	Beregner en sandsynlighed på x for den diskrete Poissonfordeling med den angivne middelværdi mu (μ), som skal være et reelt tal > 0. x kan være et ikke-negativt heltal (SINGLE – Enkelt) eller en liste med heltal (LIST – Liste). Standardindstillingen er mu=1. Sandsynlighedstæthedsfunktionen (pdf) er: $f(x) = e^{-\mu}\mu^{x}/x!, x = 0,1,2,$
7:Poissoncdf	Beregner en kumuleret sandsynlighed på x for den diskrete Poissonfordeling med den angivne middelværdi mu , som skal være et reelt tal > 0. x kan være et ikke-negativt heltal (SINGLE – Enkelt) eller en liste med heltal (LIST – Liste). Standardindstillingen er mu =1.

Stats-resultater

Variabler	1-Var eller 2- Var	Definition
n	1-Var	Antal x - eller (x , y)-datapunkter.
x	Begge	Gennemsnit af alle x-værdier.
<u>y</u>	2-Var	Gennemsnit af alle y-værdier.
Sx	Begge	Stikprøvestandardafvigelse for x .
Sy	2-Var	Stikprøvestandardafvigelse for y .
σχ	Begge	Populations standardafvigelse for <i>x</i> .
σγ	2-Var	Populations standardafvigelse for

Variabler	1-Var eller 2- Var	Definition
		у.
$\Sigma \mathbf{x}$ eller $\Sigma \mathbf{x}^2$	Begge	Summen af alle x - eller x^2 - værdier.
Σ y eller Σ y ²	2-Var	Summen af alle y - eller y^2 - værdier.
Σxy	2-Var	Summen af $(x \times y)$ for alle xy -par.
а	2-Var	Lineær regression, hældning.
b	2-Var	Lineær regression, y-skæring.
r ² eller r	2-Var	Korrelationskoefficient.
x′	2-Var	Bruger <i>a</i> og <i>b</i> til at beregne den forventede <i>x</i> -værdi, når du angiver en <i>y</i> -værdi.
y'	2-Var	Bruger a og b til at beregne den forventede y -værdi, når du angiver en x -værdi.
minX eller maxX	Begge	Minimum eller maksimum af x- værdier.
Q1	1-Var	Medianen for elementerne mellem minX og Med (1. kvartil).
Med	1-Var	Median for alle datapunkter.
Q3	1-Var	Median for elementerne mellem Med og maxX (3. kvartil).
minY eller maxY	2-Var	Minimum eller maksimum af y- værdier.

Sådan defineres statistiske datapunkter:

1. Indtast data i L1, L2 eller L3. (Se afsnittet Dataeditor).

Bemærk: ikke-heltalsfrekvenselementer er gyldige. Dette er praktisk ved indtastning af frekvenser udtrykt som procenttal eller dele, der til sammen giver 1. Stikprøvestandardafvigelsen, Sx, er dog udefineret for ikke-heltalsfrekvenser, og Sx=Error (Sx=Fejl) vises for den pågældende værdi. Alle andre statistikker vises.

- 2. Tryk på 2nd [stat-reg/distr]. Marker 1-Var eller 2-Var, og tryk på enter].
- 3. Marker L1, L2 eller L3 samt frekvensen.
- 4. Tryk på enter for at få vist menuen med variablerne.
- 5. Du kan slette data ved at trykke på data data, markere en liste, der skal slettes, og trykke på enter.

1-Var-eksempel

Find gennemsnittet af {45,55,55,55}

Slet alle data	data data 🕤 🕤 🕤	CLR FORMULA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Data	enter 45 💿 55 🕤 55 🕤 55 enter	BE DEG BE 555 55 55 55 1 1 11(5)= 1 1
Statistik	2nd [quit] 2nd [stat-reg/distr]	STATEREC DISTR LStatVars 2:1-VAR STATS 3↓2-VAR STATS
	2 (markerer 1-VAR STATS) ⊙ ⊙	IIIVARISTATIS † Data: III L2 L3 Freq: One L1 L2 L3 Galg
	enter	1-Van:L1.1 1:n=4 2:x=52.5 3↓\$x=5
Stat Var	2 enter	x ⁵ 52.S
	× 2 [enter]	x 52.5 ans*2 105

2-Var-eksempel

Data: (45,30); (55,25). Find: x'(45).

Slet alle data	data data	CLR FORMÜLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Data	enter 45 ⊙ 55 ⊙ () 30 ⊙ 25 ⊙	80 96 96 89 45 30 55 25 L2(3)=
Statistik	[2nd] [stat-reg/distr]	STAT=REG ^{™®} DISTR StatVars 2:1-VAR STATS 3↓2-VAR STATS

	3 (markerer 2-VAR STATS) ⊙ ⊙ ⊙	PEWARISHATIS ^{deg} † %Data: Int L2 L3 ydata: L1 U2 L3 FREQ: One L1 L2 L3 Gauge
StatVars	enter 2nd [quit] 2nd [stat-reg/distr] 1 • • • • • • • • •	2-Var:L1,L2,1 ↑x'(:y'(↓minX=45
	enter 45)) enter	x'(45) 15

Opgave

I sine sidste fire tests opnåede Anton følgende point: Test nr. 2 og 4 blev tildelt vægten 0,5, og test 1 og 3 blev tildelt vægten 1.

Test nr.	1	2	3	4
Point	12	13	10	11
Vægt	1	0,5	1	0,5

- 1. Find Antons pointgennemsnit (vægtede gennemsnit).
- 2. Hvad angiver værdien af n på lommeregneren? Hvad angiver værdien af Σx på lommeregneren?

Husk: Det vægtede gennemsnit er

 $\frac{\Sigma x}{n} = \frac{(12)(1) + (13)(0,5) + (10)(1) + (11)(0,5)}{1 + 0,5 + 1 + 0,5}$

3. Læreren gav Anton 4 point mere i test nr. 4 på grund af en vægtningsfejl. Find Antons nye pointgennemsnit.

data data 🗢 🗢 🗢	CIR FORMÜLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
$ \begin{array}{c} \hline \\ \hline $	CLR ≣ORMÜE OPS 3↑Clear L2 Frmla 4:Clear L3 Frmla 5€ Clear ALL
enter $12 \odot 13 \odot 10 \odot 11 \odot$ (a) $1 \odot .5 \odot 1 \odot .5$ enter	BC BE DEG BE 13 0.5 1 10 1 1 11 0.5 1 L2(5)= 1 1

[2nd] [stat-reg/distr]	STAT—REG [™] DISTR 1:StatVars 2:1-VAR STATS 3↓2-VAR STATS
2 (> () () [enter]	DELYARISTICITIS ↑ Data: Int L2 L3 Freq: One L1 Int2 L3 Gaing
enter	1-Var:L1.E2 1:n=3 2:x=11.333333333 3↓Sx=Error

Anton har et gennemsnit (\overline{x}) på 11,33 (tilnærmet til nærmeste hundrededel).

På lommeregneren repræsenterer n den samlede sum af vægtene.

n = 1 + 0.5 + 1 + 0.5.

 Σx repræsenterer den vægtede sum af hans point.

(12)(1) + (13)(0.5) + (10)(1) + (11)(0.5) = 34.

Forhøj Antons sidste point fra 11 til 15.

data 💿 🕤 🕤 15 enter	B DE DEG BC 13 0.5 1 1 15 0.5 1 1 15.5 0.5 1 1
[stat-reg/distr] 2 (<i>) () enter (<i>) () enter</i></i>	1-Var:L1.L2 1:n=3 2:x=12 3↓Sx=Error

Hvis læreren tilføjer 4 point til Test nr. 4, er Antons gennemsnit 12.

Opgave

Nedenstående tabel gengiver resultaterne af en bremsetest.

Test nr.	1	2	3	4
Hastighed (km/t)	33	49	65	79
Bremselængde (m)	5,30	14,45	20,21	38,45

Brug sammenhængen mellem hastighed og bremselængde til at vurdere bremselængden for en bil, der kører 55 km/t.

Et håndtegnet punktdiagram med disse datapunkter antyder en lineær sammenhæng. Lommeregneren benytter mindste kvadraters metode til at finde den bedste rette linje, y'=ax'+b, for data, der indtastes på lister.

data data 交 交	CIR FORMULA OPS 2↑Clear L2 3:Clear L3 Clear ALL
enter $33 \odot 49 \odot 65 \odot 79 \odot () 5.3 \odot 14.45$ $\odot 20.21 \odot 38.45$ enter	BE Dec DE 49 14.45 20.21 79 38.45 40.253
2nd [quit] 2nd [stat-reg/distr]	STATEREG [™] DISTR 1.StatVars 2:1-VAR STATS 3↓2-VAR STATS
3 (markerer 2-VAR STATS) $\odot \odot \odot$	2=VARISTATS 1 2DATA: III L2 L3 ydata: III II2 L3 FRE9: III II2 L3 Gailo Gailo
enter	2-Van:L1,L2,1 1:n=4 2:x=56.5 3↓Sx=19.89137166
Tryk på \odot efter behov for at få vist <i>a</i> og <i>b</i> .	2=Vap:L1, L2, 1 ↑Σxy=5234, 15 ; a=0, 6773251895 ↓b= -18, 66637320

Denne bedste rette linje, y'=0.67732519x'-18.66637321 modellerer den lineære tendens i dataene.

Trγk på ⊙, indtil y' er fremhævet.	2-Var:1, <u>1</u> 2,1 ↑r=0.9634117172 :x'(Jy'(
enter 55) enter	יש' (55) [™] 18.58651222

Den lineære model giver en vurderet bremselængde på 18,59 meter for en bil, der kører 55 km/t.

Regressionseksempel 1

Beregn en ax+b lineær regression for følgende data: {1,2,3,4,5}; {5,8,11,14,17}.

Data	enter $1 \odot 2 \odot 3 \odot 4 \odot$ $5 \odot 0$ $5 \odot 8 \odot 11 \odot 14 \odot 17$ enter	BE DEG DEG DEG 3 11 14 14 15 17 17 12
Regression	[2nd] [quit] [2nd] [stat-reg/distr] ⓒ ⓒ ⓒ enter	STATEREC DEG 2^1 - VAR STATS 3:2-VAR STATS 4ULinReg ax+b xDATA: L1 L2 L3 FREQ: DIM FREQ: DIM U:1 V2 L3 frege(x) y=ax+b CALC
	 ⑦ ⑦ ⑦ ⑦ enter Tryk på ⑨ for at undersøge alle resultatvariabler. 	a x+b:L1,Ľ2,1 1 1 a=3 2:b=2 3↓r²=1

Regressionseksempel 2

Beregn den eksponentielle regression for følgende data:

- L1 = {0,1,2,3,4}; L2 = {10,14,23,35,48}
- Find gennemsnitsværdien for dataene i L2.
- Sammenlign de eksponentielle regressionsværdier med L2.

Slet alle data	(data) (data) 4	BG DEG EE L1(1)=
Data	$0 \bigoplus 1 \bigoplus 2 \bigoplus 3$ $\bigoplus 4$ $\bigoplus 0 10 \bigoplus 14 \bigoplus 23 \bigoplus 35 \bigoplus 48$ enter	BI DEG DEG DEG 2 23 35 4 4 48 48 48 L2(6)=
Regression	2nd [stat-reg/distr] ⊙ ⊙	STATEREG DISTR ^PwrRe9 ax^b ExpRe9 ab^x :expRe9 ae^(bx)
Gem regressionsligningen i f(x) i table-menuen.	enter \odot \odot \odot $()$ enter	xDATA: III L2 L3 ↑ yDATA: L1 III L3 FREQ: 0113 L1 L2 L3 Re9EQ→: N0 (162) 9(x) y=ab^x Gillo

Regressionsligning	enter	ab ^x:11, 27, 1 11a=9.8752598923 2:b=1.4998307325 3↓r ² =0.994802811
Find gennemsnitsværdien (ӯ) for dataene i L2 ved hjælp af StatVars.	Image: Stat-reg/distr] 1 (Vælger StatVars) Image: StatVars)	B-22:L1, L2, L1 74\$x=1.58113883 8: gx=1.414213562 9Uy=26 Bemærk, at titellinjen minder dig om din seneste statistik- eller regressionsberegning.
Undersøg tabellen over værdier for regressionsligningen.	table 1	f(x)=9.87525989 [↑] ↓
	enter 🕤 0 enter 1 enter	173313 SetU2 ^{PEG} ↑ Start=0 Step=1 AULCO ≈ = ? CALC
	enter enter	x f(x) 9.87556 1 14.81122 2 2 22.21432 x=0 x

Advarsel: Hvis du nu beregner 2-Var Stats på dine data, beregnes variablerne **a** og **b** (sammen med **r** og **r**²) som en lineær regression. Hvis du vil bevare dine regressionskoefficienter (a, b, c, d) og r-værdier for den specifikke opgave i **StatVars**-menuen, skal du ikke genberegne 2-Var Stats efter en anden regressionsberegning.

Fordelingseksempel

Beregn binomial-pdf-fordeling ved x-værdier {3,6,9} med 20 prøver og en successandsynlighed på 0,6. Indtast x-værdierne på liste L1, gem resultaterne i L2, find derefter summen af sandsynlighederne, og gem dem i variablen *t*.

Slet alle data	data data 🕤 🕤 🕤	C∎R FORMŮLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Data	enter 3 ⊙ 6 ⊙ 9 enter	BS DES DES BE 3 9 11(1)=
DISTR	2nd [stat-reg/distr] () ⊙ ⊙ ⊙	STAT-REG DISTR 21Normalcdf 3:invNormal 4U BinomialPdf

enter 🕢	BINOMICALECTA T R: SINGLE LEGI ALL
	+
enter 20 0.6	Binomia.ipdf LTST † TRIALS=n=20 P(SUCCESS)=0.6
	+
enter 交 🕤	BINOMIAIPAG LISI † %LIST: 11 L2 L3 SAVE TO: L1 12 L3
	CALC
enter	B DEG DEG BE 6 0.004854 0.07095 0.07095 9 0.070995 0.070995 0.071095 L1(1)=3 0.00000000000000000000000000000000000
data () 4 () enter	SUMUSI PEG T Sumust: L1 12 L3
 	CALC
enter () () () () enter enter	<mark>SUNTUISI) (†</mark> Sum OF LIST=0.0758915335 Store: No X y z Q a. b. c. d Donie

Sandsynlighed

! nCr nPr 2nd [random]

 Improvement
 Improvement

!	Et fakultetstal , n!, er produktet af de positive heltal fra 1 til <i>n</i> Værdien af <i>n</i> skal være et positivt helt tal \leq 69. Når n = 0, n! = 1
nCr	Beregner antallet af mulige kombinationer med n og r , ikke-negative heltal. Objekternes rækkefølge har ingen betydning, som ved en hånd i et kortspil.
nPr	Beregner antallet af mulige permutationer af <i>n</i> elementer taget <i>r</i> ad gangen med <i>n</i> og <i>r</i> , ikkenegative heltal. Objekternes rækkefølge har betydning som i et væddeløb.

[2nd] [random] viser en menu med følgende valg:

rand	Genererer et vilkårligt reelt tal mellem 0 og 1. For at kontrollere en sekvens af tilfældige tal skal du
	gemme et heltal (seed-værdi) ≥ 0 til rand. Seed- værdien ændres vilkårligt, hver gang der genereres

	et vilkårligt tal.
randint(Genererer et vilkårligt heltal mellem to heltal, A og B , hvor $A \le$ randint $\le B$. Funktionens argumenter er: randint(heltalA,heltalB)

Eksempler

ļ	4 [!np/ p) [enter]	4! ²⁴
nCr	52 $\left[\frac{1}{nPr} \right] \left[\frac{1}{nPr} \right]$ 5 enter	4! 24 52 nCr 5 2598960
nPr	8 $\begin{bmatrix} 1 & nC_{T} \\ nP_{T} \end{bmatrix}$ $\begin{bmatrix} 1 & nC_{T} \\ nP_{T} \end{bmatrix}$ $\begin{bmatrix} 1 & nC_{T} \\ nP_{T} \end{bmatrix}$ 3 enter	4! 24 52 nCr 5 2598960 8 nPr 3 336
Gem værdien i rand	5 sto→ 2nd [random]	RANDOM Larand 2:randint(
	1 (Vælger rand) enter	52 nCr 5 [™] ~ 2598960 8 nPr 3 336 5→rand 5
rand	[2nd] [random] 1 [enter]	8 nPr 3 [™] 336 5→rand 5 rand 0.000093165
randint(2nd [random] 2 3 [2nd [,] 5 [) [enter]	5→rand 5 rand 0.000093165 randint(3,5) 5

Dpgave

En isbutik annoncerer, at den har 25 slags hjemmelavet is. Du bestiller gerne tre forskellige kugler i et bæger. Hvor mange kombinationer af iskugler kan du prøve i løbet af en varm, lang sommer?

25	nCr	3	2300
	25	25 nCr	25 nCr 3

Du kan vælge mellem 2300 bægre med forskellige kombinationer af iskugler!

Matematikværktøjer

Dette afsnit indeholder oplysninger om brug af lommeregneren til f.eks. lister, funktioner og omregninger.

Gemte operationer

2nd [op] 2nd [set op]

Med [2nd [set op] kan du gemme en operation.

2nd [op] indsætter operation på hovedskærmen.

Sådan indstilles og hentes en operation:

- 1. Tryk på 2nd [set op].
- 2. Indtast en kombination af tal, operationer og/eller værdi.
- 3. Tryk på enter at gemme operationen.
- 4. Tryk på 2nd [op] for at hente den lagrede operation og anvende den på det sidste svar eller den aktuelle indtastning.

Hvis du anvender 2nd [op] direkte på et 2nd [op] resultat, øges **n=1** iterationstælleren.

Eksempler

Clear op (Slet op)	[2nd] [set op] Hvis der er en gemt op, kan du slette den ved at trykke på [clear].	op= Enter operation. Set op:[enter] ↓
Set op (Indstil op)	⊠ 2 + 3	op=*2+3
	enter	Operation set! [2nd][op] pastes to Home Screen.
Recall op (Hent op)	4 [2nd] [op]	4*2+3 n=1 11
	[2nd] [op]	4*2+3 n=1 11 11*2+3 n=2 25

	[2nd] [op]	4*2+3 n=1 11 11*2+3 n=2 25 25*2+3 n=3 53
Redefine op (Redefiner op)	Clear 2nd [set op] Clear x^2 enter	
Recall op (Hent op)	5 2nd [op] 20 2nd [op]	5 ² n=1 25 20 ² n=1 400

Opgave

En lokal butik uddeler loyalitetspoint, som du kan indløse for forskellige gaver. Butikken tilføjer 35 point på din mobilapp for hvert besøg. Du vil gerne downloade en musikfil, hvilket koster 275 point. Hvor mange besøg kræver det? Du har i øjeblikket 0 point.

2nd [set op] Clear + 35	op=+35∎
enter	+
0 2nd [op] 2nd [op] 2nd [op] 2nd [op]	0+35 n=1 35 35+35 n=2 70 70+35 n=3 105 105+35 n=4 140
2nd [op] 2nd [op] 2nd [op] 2nd [op]	140+35 n=5 175 175+35 n=6 210 210+35 n=7 245 245+35 n=8 280

Efter 8 besøg i butikken vil du have 280 point, hvilket er nok til dit download!

Dataeditor og listeformler

data

Hvis du trykker på data), vises dataeditoren, hvor du kan indtaste data i op til 3 lister (L1, L2, L3). Hver liste kan indeholde op til 50 poster.

Bemærk: Denne funktion er kun tilgængelig i DEC-tilstand.

Tryk ved redigeringen af en liste på data for at få adgang til følgende menuer:

CLR	FORMULA	OPS
1:Clear L1 (Slet L1)	1:Add/Edit Frmla (Tilføj/rediger	1:Sort Sm-Lg (Sorter lille-stor)

CLR	FORMULA	OPS
2:Clear L2 (Slet L2) 3:Clear L3 (Slet L3) 4:Clear ALL (Slet alt)	formel) 2:Clear L1 Frmla (Slet L1-formel)	2:Sort Lg-Sm (Sorter stor-lille) 3:Sequence
	3:Clear L2 Frmla (Slet L2-formel)	(Rækkefølge) 4:Sum List
	4:Clear L3 Frmla (Slet L3-formel)	(Sumliste)
	L3-formel) 5:Clear ALL (Slet alt)	

Indtastning og redigering af data

- Tilstandsindstillinger, f.eks. talformat, flydende/fast decimal og vinkeltilstande påvirker visningen af en celleværdi.
- Brøker, kvadratrødder og π-værdier vises.
- Tryk på:
 - sto→ i en celleredigering for at gemme cellens værdi i en variabel
 - •= for at skifte talformatet, når en celle er fremhævet
 - delete for at slette en celle
 - enter clear for at rydde redigeringslinjen for en celle
 - 2nd [quit] for at vende tilbage til startskærmen
 - 2nd ext{ for at gå til toppen af en liste
- Brug **CLR**-menuen til at slette data fra en liste.

Listeformler (menuen FORMULA (Formel))

- Tryk på data () i dataeditoren for at få vist menuen FORMULA (Formel). Vælg det relevante menupunkt for at tilføje eller redigere en listeformel i den fremhævede kolonne, eller slet formler fra en bestemt liste.
- Når en datacelle er fremhævet, kan du trykke på stor som genvej til at åbne formelredigeringstilstand.
- I formelredigeringstilstand kan du ved at trykke på data få vist en menu, hvor du kan indsætte L1, L2 eller L3 i formlen.
- Formler kan ikke indeholde en cirkulær reference, f.eks. L1=L1.
- Når en liste indeholder en formel, viser redigeringslinjen cellenavnet omvendt. Celler bliver opdateret, hvis lister, der refereres til, bliver opdateret.
- Hvis du vil rydde en formelliste, skal du slette formlen først, og derefter rydde listen.
- Hvis sto→ bruges i en listeformel, gemmes det sidste element på den beregnede liste i en variabel. Lister kan ikke gemmes.

• Listeformler accepterer alle lommeregnerens funktioner og reelle tal.

Valgmuligheder (OPS-menu)

Tryk på data () i dataeditoren for at få vist **OPS**-menuen. Vælg det relevante punkt på menuen for at:

- sortere værdier fra mindste til største eller fra største til mindste
- oprette en værdisekvens, der skal udfylde en liste
- samle elementerne på en liste og gemme dem i en variabel med henblik på yderligere undersøgelse.

Eksempel

L1	$ \begin{array}{c} \text{data} & \text{data} & 4 \\ \text{data} & 1 \stackrel{\text{\tiny B}}{=} 4 \bigcirc \\ 2 \stackrel{\text{\tiny B}}{=} 4 \bigcirc \\ 3 \stackrel{\text{\tiny B}}{=} 4 \bigcirc \end{array} $	B DEG B 1/2 0.000 0.000 1 1 1 1 1 1
	4	
Formel	() (data) ()	CLR CORNULE OPS CLR Add/Edit Frmla 2:Clear L1 Frmla 3↓Clear L2 Frmla
	enter	Bit Des Des Des 1 / 4 3 / 4 1 AL2=
	[data]	NAMES 1911 2:L2 3:L3
	enter [2nd] [f∢⊁d]	B DE DEG B 1 / 2 3 / 4 1 ⊕L2=L1▷ f ↔ d
	enter	B DEG DEG EE 1 ≠ 4 0.25 - 3 ≠ 4 0.75 - - 1 1 - - 1249 E0.25 - - -
Udfyld en liste med en sekvens	() data () 3 () () enter	SIGUIANCIMINATION t FILL LIST: L1 1 dim(list)
	$ \begin{array}{c} [\pi_i^e] \; x_{abcd}^{yzz} \; \text{[enter]} \; 1 \; \text{[enter]} \; 4 \\ \hline \text{[enter]} \; 1 \; \text{[enter]} \end{array} $	EXPR IN χ:πχ t START χ:1 END χ:4 STEP SIZE:1 STEULING FILL

	enter	8 8 0.25 1.44 0.25 3.44 0.75 3π 1 1 4π 1 3(1)=π
Gem summen af L1 i variablen z	data () 4 enter	SUMELISTI (F) L2 L3
	enter () () () enter enter	SUNTERSI SUM OF LIST=5/2 STORE: No % y 2 t a b c d DONE

Opgave

På en novemberdag indeholdt en vejrmelding på Internettet følgende temperaturer:

Paris, Frankrig 8°C

Moskva, Rusland -1°C

Montreal, Canada 4°C

Omregn disse temperaturer fra grader celsius til grader fahrenheit. (Se også afsnittet Omregninger).

Husk: F = $\frac{9}{5}$ C + 32

data data 4 data () 5	CIR FORMÜLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
	CLR ≣ORNUÜE OPS 3↑Clear L2 Frmla 4:Clear L3 Frmla 58 Clear ALL
8 👁 🦳 1 👁 4 👁 🕅	00 00 000
(data) () 1	B DEG DEG DEG -1 H HL2=
9 ÷ 5 × data 1 + 32	Image: Second

	12(60) 146	 .4	
enter	© 8 -1 4	E DEG 16.4 30.2 39.2	œ

Temperaturen i Sydney, Australien er 21° C – find temperaturen i grader fahrenheit, og gem den i variablen z.

④ ⊙ ⊙ ⊙ 21 enter	B DEG BE *1 30,2 39,2 21 69.8 L1(5)=
$ \textcircled{O} (enter 2nd) (sto \rightarrow x_{abcd}^{zzt} x_{abcd}^{zzt} x_{abcd}^{zzt}) $	B DEG BE F *1 30,2 39,2 39,2 1 21 59,8 59,8 1 1 L2(4)=69.8 → 2∎
enter [2nd [recall] 🕤 🕤	RECALL VAR 1:x=0 2:y=0 SUz=69.8

Funktionstabel

table viser en menu med følgende valg:

1:Add/Edit Func (Tilføj/rediger funktion)	Gør det muligt at definere funktionen $f(x)$ eller $g(x)$ eller begge og generere en tabel med værdier. $\bullet z$ på en værdi i tabellen skifter talformatet.
2:f(Indsætter f(i et inputområde, f.eks. hovedskærmen, for at evaluere funktionen ved et punkt (for eksempel f(2)).
3:g(Indsætter g(i et inputområde, f.eks. hovedskærmen, for at evaluere funktionen ved et punkt (for eksempel g(3)).

Med funktionstabellen kan du vise en defineret funktion i tabelform. Sådan opsætter du en funktionstabel:

- 1. Tryk på table, og vælg Add/Edit Func (Tilføj/rediger funktion).
- 2. Indtast en eller to funktioner, og tryk på enter.
- 3. Vælg tabelstart, tabeltrin, auto, eller spørg-x-indstillingerne, og tryk på enter.

Tabellen vises med de angivne værdier. Tabelresultater vises som reelle tal og kun i DEC-tilstand. Komplekse funktioner evaluere kun på hovedskærmen.

Start	Angiver startværdien for den uafhængige variabel, x.
Step (Trin)	Angiver stigningsværdien for den uafhængige

	variabel, x. Trinnet kan være positivt eller negativt.
Auto	Lommeregneren genererer automatisk en serie værdier ud fra tabelstart og tabeltrin.
Ask-x (Spørg-x)	Du kan opbygge en tabel manuelt ved at indtaste specifikke værdier for den uafhængige variabel, x. Tabellen har maks. tre rækker, men du kan overskrive x-værdierne efter behov for at se flere resultater.

Bemærk: I funktionstabelvisning skal du trykke på clear for at få vist og redigere guiden Table Setup (Tabelopsætning) efter behov.

Dpgave

Find toppunktet på parablen y = x(36 - x) ved hjælp af en tabel over værdier.

Husk: Parablens toppunkt er det punkt på parablen, der også er på symmetriaksen.

table 1 x_{abcd}^{zzz} () 36 x_{abcd}^{zzz}	$f(x) = x(36 - x) \blacksquare \uparrow$
enter Clear enter	TABLESETUE *** Start=0 Step=1 RUTCO &=? CALC
15 ⊙ 3 ⊙ ⊙	ITABUSETUR T Start=15 \$ Step=3 \$ AUGO & = ? CALC
enter	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Efter at have søgt tæt på x = 18, ser punktet (18,324) ud til at være parablens toppunkt, da det optræder som vendepunktet for punktsættet i denne funktion. Du kan søge tættere på x = 18 ved at ændre trinværdien til mindre og mindre værdier, så du ser punkter tættere på (18,324).

Dpgave

En velgørenhedsfond indsamlede 3.600 kr. som støtte til et lokalt spisested. Der udbetales 450 kr. til spisestedet hver måned, indtil beløbet er opbrugt. Hvor mange måneder understøttes køkkenet med dette beløb?

Husk: Hvis x = måneder, og y = resterende beløb, så er y = 3600 - 450x.

table 1 clear 3600 - 450 x abcd	f(x)=3600 [∞] -450x∎† ↓
enter Clear enter $0 \odot 1 \odot 0$ enter enter	TABLE SETUP t Start=0 Step=1 Auto ZEE? CALG
Indtast hvert enkelt gæt, og tryk på enter.	x f(x) 2700 2700 7 450 8 0
Beregn værdien af f (8) på hovedskærmen. [2nd] [quit] [table]	FUNCTION TABLE 1:Add/Edit Func 2:f(3:9(
2 Vælger f(8) enter	f(8) ^{DEG} 0

Støtten på 450 kr. pr. måned varer i 8 måneder, da y(8) = 3600 - 450(8) = 0 som vist i værditabellen.

Opgave

Find skæringspunktet for linjerne f(x)=2x+5 og g(x)=x-4.

table 1 clear (-) 2 x_{abcd}^{yet} + 5	$f(x) = -2x + 5 \blacksquare \uparrow$
	+
enter Clear x_{abcd}^{yzi} – 4	g(x)=x-4
	+
enter 2 enter 1	
Vælg Auto	Start=2 Step=1
enter enter	$\frac{1}{2} \frac{1}{2} \frac{1}$
enter 🕤	$\begin{array}{c c} x & f(x) & g(x) \\ 2 & 1 & -2 \\ 0 & -1 & -1 \\ 4 & -3 & 0 \\ x=3 & \end{array}$

De to linjer skære hinanden ved (x,y) = (3,-1).

Matricer

Ud over operationerne i menuen **MATH (Matematik)** for matricer er følgende matrixoperationer tilladt. Dimensionerne skal være korrekte:

- matrix + matrix
- matrix matrix
- matrix × matrix
- Skalar multiplikation (for eksempel 2 × matrix)
- *matrix* × *vektor* (*vektor* fortolkes som en kolonnevektor)

2nd [matrix] NAMES

2nd [matrix] viser menuen NAMES (Navne) for matricer, som indeholder dimensionerne for matricerne og gør det muligt at bruge dem i beregninger. Række- og kolonnedimensionen for en matrix kan være $1 \le række \le 3$ og $1 \le kolonne \le 3$.

1:[A]	Definerbar matrix [A].
2:[B]	Definerbar matrix [B].
3:[C]	Definerbar matrix [C].
4:[Ans]	Sidste matrixresultat ([Ans]=række×kolonne) eller
	sidste vektorresultat ([Ans] dim=n).
	Kan ikke redigeres.
	Bemærk: Celleværdierne kan skiftes. Fremhæv cellen for at få vist den komplette nøjagtighed eller det eksakte format.
5:[I2]	2×2 enhedsmatrix (kan ikke redigeres).
6:[I3]	3×3 enhedsmatrix (kan ikke redigeres).

2nd [matrix] MATH

2nd [matrix] viser menuen MATH (Matematik) for matricer, som gør det muligt at udføre følgende operationer:

1:Determinant	Determinant for en kvadratisk matrix. Syntaks: det (<i>kvadratisk matrix</i>)
2: ^T Transpose	Transponering af en matrix. Syntaks: <i>matrix</i> ^T
3:Inverse	Invertering af en kvadratisk matrix. Syntaks: <i>kvadratisk matrix</i> ⁻¹
4:ref reduced	Række-echelonform. Syntaks: ref(<i>matrix</i>)
5:rref reduced	Reduceret række-echelonform. Syntaks: rref (<i>matrix</i>)

2nd [matrix] EDIT

[2nd [matrix] ④ viser menuen EDIT (Rediger) for matricer, hvor du kan definere eller redigere matrix [A], [B] eller [C].

Bemærk: Tryk på • ≠ for at skifte talformatet i en celle efter behov.

Eksempel

Definer matrix [A] = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Beregn determinant, transponeret, invers og rref af [A].

Definer [A]	2nd [matrix] ④	NAMES MATH ∎DIII IIIA] 2:[b] 3↓[c]
	enter	TATATANA CAN Rolas: F1 2 3 Columns: F1 2 3 Matrix Editor
Indstil dimensionerne	() enter () enter enter	MATRIXICA) Dec Rolas: 1 2 3 Columns: 1 2 3 Matrixeditor
Indtast værdier	1 ⊙ 2 ⊙ 3 ⊙ 4 ⊙	1 2 3 2 R(2,2)=4 3
det([A])	2nd [quit] 2nd [matrix] ()	NAMES MAN EDIT Determinant 2:⊺ Transpose 3↓Inverse
	enter 2nd [matrix] enter) enter	det([A]) [™] -2
Transponer	2nd [matrix] enter 2nd [matrix] () ⊙ enter	det([A]) [™] -2
	enter	

Invers	2nd [quit] Clear 2nd [matrix] enter 2nd [matrix] ⊙ ⊙ ⊙ enter	[A]-1∎ ^{№6}
	enter	
rref	Clear Clear 2nd [matrix] () ()	NAMES MAN EDIT 3↑Inverse 4:ref reduced 5∎rref reduced
	enter [2nd [matrix] enter [)]	rref([A]) ®
	enter	1 0 0 0 1 1

Vektorer

Ud over operationerne i menuen **MATH (Matematik)** for vektorer er følgende vektoroperationer tilladt. Dimensionerne skal være korrekte:

- vektor + vektor
- vektor vektor
- Skalær multiplikation (for eksempel 2 × vektor)
- *matrix* × *vektor* (*vektor* fortolkes som en søjlevektor)

2nd [vector] NAMES

[2nd] [vector] viser menuen NAMES (Navne) for vektorer, som indeholder dimensionerne for vektorerne og gør det muligt at bruge dem i beregninger

Dimensionen for en vektor kan være $1 \le \dim \le 3$.

1:[u]	Definerbar vektor [u]
2:[v]	Definerbar vektor [v]
3:[w]	Definerbar vektor [w]
4:[Ans]	Sidste matrixresultat ([Ans] = <i>række×kolonne</i>) eller sidste vektorresultat ([Ans] dim = <i>n</i>). Kan ikke redigeres.

Bemærk: Celleværdierne kan skiftes. Fremhæv
cellen for at få vist den komplette nøjagtighed
eller det eksakte format.

2nd [vector] MATH

2nd [vector] viser menuen **MATH (Matematik)** for vektorer, som gør det muligt at udføre følgende beregninger:

1:DotProduct	Prikprodukt af to vektorer med samme dimension. Syntaks: DotP(vektor1,vektor2)
2:CrossProduct	Krydsprodukt af to vektorer med samme
	dimension.
	Syntaks: Cross Plughtor 1 yektor 2)
	Syntaks. Clossi (venior 1, venior 2)
3:norm	Normen (længden) af en vektor.
magnitude	Supported to a superior of the
magintaac	Syntaks: norm(vektor)

2nd [vector] EDIT

[2nd] [vector] () viser menuen EDIT (Rediger) for vektorer, hvor du kan definere eller redigere vektor [u], [v] eller [w].

Bemærk: Tryk på •= for at skifte talformatet i en celle efter behov.

Eksempel

Definer vektor $[u] = [0.5 \ 8]$. Definer vektor $[v] = [2 \ 3]$.

Beregn [u] + [v], **DotP(**[u],[v]) og **norm(**[v]).

Definer [u]	2nd [vector] ④	NAMES MATH ∎DII III 2:[v] 3↓[w]
	enter 🕢 enter	VECTORICO Dimension: 1 2 3 Vectorieditor
	enter 1 📴 2 enter 8 enter	[1/2 [] u2=8
Definer [v]	2nd [vector] () ⊙ enter () enter	VECTORICO Dimension: 1 2 3 Vectorieditor

-		
	enter 2 enter 3 enter	
		02=3
Tilføj vektorer	2nd [quit] 2nd [vector] enter +	[u]+[v]∎ ^{∞66} î
	2nd [vector] 🕤 enter	
	enter	[11]
DotP	[clear] [clear] [2nd] [vector] () [enter]	DotP(∎ ⁰⁶⁶
	2nd [vector] enter 2nd [,] 2nd [vector] ⊙ enter	DotP([u],[v]∎ Î
) enter .5 ≥ 2 + 8 ≥ 3 enter Bemærk: DotP beregnes her på to måder.	DotP([u], [v]) 25 .5*2+8*3 25
norm	Clear 2nd [vector] () () () () enter 2nd [vector] () (enter [) enter	norm([v]) 13
	2nd $[r] 2 x^2 + 3 x^2$ () enter Bemærk: norm beregnes her på to måder.	$ \begin{array}{c} \operatorname{norm}([v])^{\text{BS}} & \sqrt{13} \\ \sqrt{2^2 + 3^2} & \sqrt{13} \end{array} $

Ligningsløsere

Numerisk ligningsløser

2nd [num-solv]

 $\ensuremath{\underline{\text{2nd}}}\xspace$ [num-solv]beder dig om ligningen og variablernes værdier. Derefter vælger du den variable, du vil finde.

Eksempel

For den følgende viste ligning skal du finde variablen b.

Husk: Hvis du har på forhånd definerede variabler, antager løseren disse værdier.

Num-solv	[2nd] [num-solv]	III=III Enter equation to solve. ↓
Venstre side	$1 \stackrel{o}{\underset{\Box}{\cong}} 2 {}_{\bullet} x^{\frac{z+z}{abcd}} x^{\frac{z}{abcd}} x^{\frac{z+z}{abcd}} $ $- 5 \frac{x^{\frac{z+z}{abcd}}}{x^{\frac{z+z}{abcd}}} \frac{x^{\frac{z+z}{abcd}}}{x^{\frac{z+z}{abcd}}} {}_{\bullet} }{}_{\bullet} {}_{\bullet} {}_{\bullet} }{}_{\bullet} {}_{\bullet} {}_{\bullet} {}_{\bullet} }{}_{\bullet} {}_{\bullet} }{}_{\bullet} {}_{\bullet} }{}_{\bullet} }{$	$\frac{\frac{1}{2}x^2 - 5a = \blacksquare}{4}$
Højre side	$\begin{array}{c} 6 \begin{array}{c} \mathbf{x}_{abcd}^{yzt} & - \\ \mathbf{x}_{abcd}^{yzt} & \mathbf{x}_{abcd}^{yzt} \\ \mathbf{x}_{abcd}^{yzt} & \mathbf{x}_{abcd}^{yzt} \\ \mathbf{x}_{abcd}^{yzt} & \mathbf{x}_{abcd}^{yzt} \\ \end{array}$	$\frac{\frac{1}{2}x^2 - 5a = 6x - b$
Startværdi for den variable	enter 1 D 2 ()	$\frac{1}{2}$
	enter 2 🗄 3 ()	EDIT VARIABLE IF NEEDED † a= $\frac{2}{3}$
	enter 1 📴 4 ()	=011 VARIABLE I E NEEDED ↑ b= ‡ ■
Vælg Iøsningsvariabel	enter () ()	
Løsningsgrænser	enter ⊙ ⊙ Indtast det interval, hvori du forventer løsningen som [<i>LOWER</i> , <i>UPPER</i>] (Nedre, Øvre) om nødvendigt.	INTERSOLUTION BOUNDS † Solve on Ildher, Upper: Lower=-1299 Upper=1299 Solve
	enter	NUMBRICISOLVERSOLUTION† b=6.20833333333 LEFT-RIGHT=0 NUMBRICISOLVERSOLUTION† b=149 24 LEFT-RIGHT=0 LEFT-RIGHT=0

		hvor tæt løsningen er på det eksakte svar.	
--	--	---	--

Polynomiumsløser

2nd [poly-solv]

[2nd] [poly-solv]beder dig om at vælge enten anden- eller tredjegradsløseren. Derefter indtaster du de reelle koefficienter til de variable og løser ligningen. Løsninger er reelle eller komplekse.

Eksempel på en andengradsligning.

Husk: Hvis du har på forhånd definerede variabler, antager løseren disse værdier.

Poly-solv	[2nd] [poly-solv]	POLY SOLVER 1:ax ² +bx+c=0 2:ax ³ +bx ² +cx+d=0
Indtast koefficienter	enter 1	a=1∎ t
	© [-] 2	
	⊙ 2 [enter]	
Løsninger	[enter]	022235220E0 t x1=1+i
	\odot	0.x24bx+c=0 ^{DEG} ↑ x2=1-i
		STORE x1: 10 x y z t † STORE x2: 10 x y z t QuadeQ>: 10 f(x) 9(x) STORE
		IDRM:: 0(%-h)2*k=0 † 0.=1 h=1 k=1 k=1 SOLVE AGAIN QUIT

På løsningsskærmene i polynomiumløseren kan du trykke på $\textcircled{\bullet z}$ for at skifte talformatet for løsningerne x1, x2 for anden grad eller x1, x2 og x3 for tredje grad.

Løser til system af lineære ligninger

2nd [poly-solv]

 $[\mbox{2nd}]$ $[\mbox{systemer}$ af lineære ligninger. Du vælger mellem 2×2 og 3×3 systemer.

Noter:

- x-, y- og z-resultater gemmes automatisk i x-, y- og z-variablerne.
- Brug $\Rightarrow z$ til at skifte mellem resultaterne (x, y og z) efter behov.
- Systemløseren løser for en unik løsning eller uendelige løsninger i lukket formel, eller den angiver ingen løsning.

Eksempel på et 2×2 system

$$L\phis: \frac{\frac{1}{3}x + \frac{2}{3}y = \frac{37}{90}}{\frac{2}{5}x - \frac{1}{5}y = \frac{28}{75}}$$

Sys-solv	[poly-solv]	SYSTEM SÖLVER 1:2x2 Linear EQs 2:3x3 Linear Sys
2×2 system	enter	(0)x + (0)y = 0 (0)x + (0)y = 0 <u>SOLVE</u>
Indtast ligninger	1 3 enter enter 2 3 enter 37 90 enter 2 5 enter - 1 5 enter 28 75 enter	(1/3)x +(2/3)y= 37/90 (2/5)x -(1/5)y= 28/75 SOLVE
Løsning	[enter]	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \hline \textbf{LINEARSYSTEMSOLUTION} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Skift talformat (om nødvendigt)	(+) <i>≈</i>	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ x=0.99333333333 \end{array} \\ \downarrow \end{array}$

	enter	LINEARSYSTER ^{®®} Solution † y= ³ 25
Skift talformat (om nødvendigt)	◆ ≈	unnenasyster southon ↑ 9=0.12
	enter	LINEAR SYSTEM SOLUTION † Solve again quit

Eksempel på et 3×3 system

5x - 2y + 3z = -9Løs: 4x + 3y + 5z = 42x + 4y - 2z = 14

Sys-solv	[2nd] [sys-solv] ⊙	SYSTEM SÖLVER 1:2x2 Linear EQs 203x3 Linear Sys
3×3 system	lenter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Indtast koefficienter	5 enter () 2 enter 3 enter () 9 enter 4 enter 3 enter 5 enter 4 enter 2 enter 4 enter () 2 enter 14 enter Bemærk: Bemærk for 3x3, at den første ligning skal indtastes som: 5x + -2 + 3z = -9	5 -2 5 4 4 2 4 -2 14 2 4 -2 14 50 LV 3
Løsning	enter	

lenter	Linearsystensolution + y=3
enter	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
enter	LINEAR SYSTEM SOLUTION † Solve Again quit

Bemærk: Tryk på • ≠ for at skifte talformatet i en celle efter behov.

Eksempel på et 3×3 system med uendelig mange løsninger

Indtast systemet	2nd [sys-solv] 2 1 enter 2 enter 3 enter 4 enter 2 enter 4 enter 6 enter 8 enter 3 enter 6 enter 9 enter 12 enter	1: 2: 4 2: 4 3: 6: 9 12 50 8 12 50 8 12
Løsning	enter	INFINITE SOLUTIONS
	[enter]	I INERRESYSTER [™] SOLUTION ↑ x=4-2y-3z ↓
	enter	
_	[enter]	LINEARSYSTEMSOLUTION ↑ Z=Z ↓
	enter	LINEAR SYSTEM SOLUTION † Solve Again quit

Talsystemer

2nd [base n]

Baseomregning

[2nd] [base n] viser CONVR-menu, som omregner et reelt tal til det tilsvarende i en angivet base.

1:▶ Hex	Omregner til hexadecimal (base 16).
2:▶ Bin	Omregner til binær (base 2).
3:▶ Dec	Omregner til decimal (base 10).
4:▶ Oct	Omregner til oktal (base 8).

Basetype

[2nd] [base n] () viser TYPE-menuen, hvor du kan angive basen for et tal uanset lommeregnerens aktuelle talbasetilstand.

1:h	Angiver et hexidecimalt heltal.
2:b	Angiver et binært heltal.
3:d	Angiver et decimalt heltal.
4:0	Angiver et oktalt heltal.

Eksempler i DEC-tilstand

Bemærk: Tilstanden kan indstilles til DEC, BIN, OCT eller HEX. Se afsnittet Tilstand.

d ► Hex	[clear] 127 [2nd] [base n] 1 [enter]	127∙Hex [™] 7Êh
h ▶ Bin	Clear 2nd [F] 2nd [F] 2nd [base n] ① 1 2nd [base n] 2 enter	FFh⊁Bin 11111111b
b ► Oct	Clear 10000000 [2nd [base n]) 2 [2nd [base n]] 4 enter	100000000b→0ct 200o
o ► Dec	○ [enter] [enter]	100000000b→Oct 200o 200o 128

Boolesk logik

2nd [base n] () viser menuen LOGIC (Logik), hvor du kan udføre boolesk logik.

1:and	Bitvis AND af to heltal
2:or	Bitvis OR af to heltal
3:xor	Bitvis XOR af to heltal
4:xnor	Bitvis XNOR af to heltal
5:not(Logisk NOT af et tal
6:2's(2's komplement af et tal
7:nand	Bitvis NAND af to heltal

Eksempler

BIN-tilstand:	Clear	1111 and 1010
and, or	$\boxed{mode} \odot \odot \odot \odot$	1010b
	() () enter	1111 or 1010 1111b
	1111 2nd [base n] (1	
	1010 enter	
	1111 2nd [base n] () 2	
	1010 enter	
BIN-tilstand:	Clear	11111 xor 10101
xor, xnor	11111 [2nd [base n] () 3	10105
	10101 enter	11111 xnor 10101 1111110101b
	11111 2nd [base n] 🕢 4	
	10101 [enter]	
HEX-tilstand:	clear	2's(FF)
HEX-tilstand: not, 2's	[clear] [mode] ⊙ ⊙ ⊙ ⊙	2's(FF) FFFFFFF61h
HEX-tilstand: not, 2's	clear mode ⊙ ⊙ ⊙ ⊙ () enter	2's(FF) FFFFFFF61h not(ans) FEh
HEX-tilstand: not, 2's	Clear mode ⊙ ⊙ ⊙ ⊙ () enter 2nd [base n] () 6	2's(FF) FFFFFFF61h not(ans) FEh
HEX-tilstand: not, 2's	Clear mode • • enter 2nd [base n] • 6 2nd [F]	2's(FF) FFFFFFF61h not(ans) FEh
HEX-tilstand: not, 2's	Clear mode • • enter 2nd [base n] • 6 2nd [F] enter •	2's(FF) [™] ~ FFFFFFF61h not(ans) FEh
HEX-tilstand: not, 2's	clear mode 	2's(FF) FFFFFFFF01h not(ans) FEh
HEX-tilstand: not, 2's	clear mode • • enter 2nd [base n] • 6 2nd [F] 2nd [F] 2nd enter 2nd [base n] • 2nd [base n] • 5 2nd [answer]) enter	2's(FF) FFFFFFFF61h not(ans) FEh
HEX-tilstand: not, 2's DEC-tilstand:	Clear mode 	2's(FF) FFFFFFF01h not(ans) FEh
HEX-tilstand: not, 2's DEC-tilstand: nand	clear mode 	2's (FF) FFFFFFF61h not (ans) FEh
HEX-tilstand: not, 2's DEC-tilstand: nand	clear mode \bigcirc \bigcirc \bigcirc enter 2nd [base n] \bigcirc 6 2nd [F] 2nd [F] \bigcirc enter \bigcirc \bigcirc \bigcirc 2nd [base n] \bigcirc \bigcirc \bigcirc 2nd [base n] \bigcirc \bigcirc \bigcirc enter \bigcirc \bigcirc \bigcirc \bigcirc 2nd [answer] $)$ enter \bigcirc clear \bigcirc \bigcirc \bigcirc enter 192 2nd [base n] \bigcirc \bigcirc \bigcirc	2's (FF) FFFFFFF01h not (ans) FEh
HEX-tilstand: not, 2's DEC-tilstand: nand	clear mode \bigcirc \bigcirc \bigcirc enter 2nd [base n] \bigcirc \bigcirc meter 2nd [F] 2nd \bigcirc meter \bigcirc \bigcirc \bigcirc meter \bigcirc \bigcirc \bigcirc meter \bigcirc \bigcirc \bigcirc meter \bigcirc \bigcirc \bigcirc clear \bigcirc \bigcirc mode \bigcirc \bigcirc \bigcirc 192 2nd [base n] \bigcirc 48 enter \bigcirc \bigcirc	2's(FF) FFFFFFF01h not(ans) FEh

Evaluering af udtryk

2nd [expr-eval]

Tryk på [2nd] [expr-eval]for at indsætte og beregne et udtryk med tal, funktioner og variabler/parametre. Hvis du trykker på [2nd] [expr-eval]i et udfyldt hovedskærmsudtryk, indsættes indholdet i **Expr=**. Hvis markøren befinder sig i historikken, indsættes det markerede udtryk i **Expr=**, når du trykker på [2nd] [expr-eval]

Hvis variablerne x, y, z, t, a, b, c eller d bruges i et udtryk, bliver du bedt om værdier, men du kan også bruge de gemte værdier, der vises for hver anmodning. Det tal, der er gemt i variablerne, opdateres på lommeregneren.

Eksempel

[2nd] [expr-eval]Clear]	Expr=
	Enter Expression
$2 \left[x_{abcd}^{yzt} \right] + \left[x_{abcd}^{yzt} \right] \left[x_{abcd}^{yzt} \right] \left[x_{abcd}^{yzt} \right]$	Expr=2x+z∎
	+
enter clear 1 $\frac{1}{2}$ 4	$x = \frac{1}{4} \blacksquare$
	+
enter] [clear] [2nd] [47] 27	z=√270 t
	+
enter	$2x+z$ $\frac{1+6\sqrt{3}}{2}$
[2nd] [expr-eval]	Expr=2x+z
	+
enter] (clear) [2nd] [√] 40	
	Ļ
enter Clear 2nd [\checkmark] 45 () π_i^e π_i^e (π_i^e)	z=√45i∎ [™]
	t
enter	2x+z 4√10+3√5i

Konstanter

Med konstanter kan du få adgang til videnskabelige konstanter og indsætte dem i forskellige områder på TI-30X Pro MathPrint[™] lommeregneren. Tryk på <u>2nd</u> [constants]for at få adgang og på ④ eller ④ for at vælge enten menuen **NAMES (Navne)** eller **UNITS** (Enheder) for de samme 20 fysiske konstanter. Brug ④ og ④ til at rulle gennem listen over konstanter i de to menuer. Menuen **NAMES (Navne)** viser en forkortet navnetekst ud for konstantens tegn. Menuen **UNITS (Enheder)** har samme konstanter som **NAMES** (Navne), men konstantens enheder vises i menuen.

NEMI		
1 H c	Speed Light	
و 2: 9	<u>GravityAcce</u>	L
З↓ н	Planck Const	L

<u>Na</u> mes Units	
i⊞ c m∕s	
Z g m/s/	
JWN J S	

Bemærk: De viste konstantværdier afrundes. De værdier, der bruges til beregningerne, er beskrevet i følgende tabel:

Konstant		Anvendt værdi til beregninger
c	lysets hastighed	299792458 meter pr. sekund
g	tyngdeacceleration	9,80665 meter pr. sekund ²
h	Plancks konstant	6,626070040×10 ⁻³⁴ Js
lkke tilgængelig	Avogadros konstant	6,022140857×10 ²³ molekyler pr. mol
R	ideal gaskonstant	8,3144598 joule pr. mol pr. kelvin
m _e	elektronmasse	9,10938356×10 ⁻³¹ kilogram
m _р	protonmasse	1,672621898×10 ⁻²⁷ kilogram
m n	neutronmasse	1,674927471×10 ⁻²⁷ kilogram
m _μ	myonmasse	1,883531594×10 ⁻²⁸ kilogram
G	universaltyngdekraft	6,67408×10 ⁻¹¹ meter ³ pr. kilogram pr. sekund ²
F	Faradays konstant	96485,33289 coulomb pr. mol
a _0	Bohr radius	5,2917721067×10 ⁻¹¹ meter
r _e	klassisk elektronradius	2,8179403227×10 ⁻¹⁵ meter
k	Boltzmanns konstant	1,38064852×10 ⁻²³ joule pr. kelvin
e	elektronladning	1,6021766208×10 ⁻¹⁹ coulomb

Konstant		Anvendt værdi til beregninger
u	atommasseenhed	1,66053904×10 ⁻²⁷ kilogram
atm	standardatmosfære	101325 pascal
ε 0	vakuunpermittiviteten	8,85418781762×10 ⁻¹² farad pr meter
μ 0	vakuumpermeabiliteten	1,256637061436×10 ⁻⁶ newton pr. ampere ²
Cc	Coulombs konstant	8,987551787368×10 ⁹ meter pr. farad

Omregninger

Med menuen **CONVERSIONS (Omregninger)** kan du udføre i alt 20 omregninger (eller 40 ved omregning begge veje). Omregningen skal være i slutningen af et udtryk. Værdien af det fulde udtryk vil blive omregnet. Omregninger kan gemmes i variabler.

Du kan få adgang til menuen **CONVERSIONS (Omregninger)** ved at trykke på 2nd [convert]. Tryk på et af tallen (1-5) for at markere, eller tryk på ⊙ og ⊙ for at rulle gennem og markere en af **CONVERSIONS (Omregninger)**-undermenuerne. Undermenuerne omfatter kategorierne English-Metric (Engelsk-metrisk), Temperature (Temperatur), Speed and Length (Hastighed og længde), Pressure (Tryk) og Power and Energy (Effekt og energi).

DEG
CONVERSIONS
HELD911Sh-Metric
2. Tomponaturo
z remperature
34Speed. Length L
ovorcea, Lengen

DEG
CONVERSIONS
sispeed, Length
4:Pressure
Dower Energy
CORT I LIEL 35

Omregning fra engelsk til metrisk

in ▶ cm	inches til centimeter
cm ▶ in	centimeter til inches
ft≯m	feet til meter
m≯ft	meter til feet
yd ▶ m	yards til meter
m ▶ yd	meter til yards
mile 🕨 km	miles til kilometer
km ▶ mile	kilometer til miles
acre ▶ m ²	acres til kvadratmeter
m ² ▶ acre	kvadratmeter til acres
gal US ▶ L	US gallons til liter
L▶ gal US	liter til US gallons
gal UK ▶ L	UK gallons til liter

L▶ gal UK	liter til UK gallons
oz ▶ gm	ounces til gram
gm ▶ oz	gram til ounces
lb ▶ kg	pounds til kilogram
kg ▶ lb	kilogram til pounds

Temperaturomregning

°F▶°C	Fahrenheit til celsius
°C▶°F	Celsius til fahrenheit
°С▶К	Celsius til kelvin
K▶°C	Kelvin til celsius

Omregning af hastighed og længde

km/hr ▶ m/s	kilometer/time til meter/sekund	
m/s ▶ km/hr	meter/sekund til kilometer/time	
LitYr ▶ m	lysår til meter	
m ▶ LitYr	meter til lysår	
pc ▶ m	parsec til meter	
m ▶ pc	meter til parsec	
Ang ▶ m	Ångstrøm til meter	
m ▶ Ang	meter til ångstrøm	

Omregning af effekt og energi

J ▶ kWh	Joule til kilowatttimer
kWh ▶ J	kilowatttimer til joule
J ▶ cal	Joule til kalorier
cal ▶ J	kalorier til joule
hp ▶ kW	hestekræfter til kilowatt
kW ▶ hp	kilowatt til hestekræfter

Trykomregning

atm 🕨 Pa	atmosfære til pascal	
Pa ▶ atm	Pascal to til atmosfære	
mmHg ▶ Pa	millimeter kviksølv til pascal	
Pa ▶ mmHg	Pascal til millimeter kviksølv	

Eksempler

Temperatur	(() 22) 2nd [convert]	Temperature f
	2 [enter] [enter]	OCPK KPOC
	(Sæt negative tal eller udtryk i parentes).	(-22) °F⊮°°C -30́
Hastighed, længde	Clear (60) 2nd [convert] ⊙ ⊙ enter enter enter	Speed. Lengtin f km/hpm/s m/s⊅km/h LitYr⊅m m≯LitYr Pc⊅m m≯Pc An9≯m m≯An9
		(60) km/h≯m/s 16.66666667
Effekt, energi	clear (200) 2nd [convert]	POWERS ENERSY † JPKWh KMINJ JPcal calbj hPPKW KWPhP
		(200) k₩h¥J 720000000

Komplekse tal

2nd [complex]

Lommeregneren udfører følgende beregninger med komplekse tal:

- Addition, subtraktion, multiplikation og division
- Beregninger af argument og absolut værdi
- Beregning af reciprok værdi, kvadrattal og kubiktal
- Beregning af komplekst konjugeret tal

Indstilling af det komplekse format

Indstil lommeregneren til DEC-tilstand ved beregning med komplekse tal.

mode \odot \odot \odot Vælger menuen **REAL** (Reel). Brug 0 og 0 til at rulle i menuen **REAL** (Reel) for at fremhæve det ønskede format for komplekse resultater **a+bi** eller **r** $\angle \theta$, og tryk på enter.

REAL (Reel), **a+bi**, eller $\mathbf{r} \angle \theta$ indstiller formatet for resultater med komplekse tal.

a+bi rektangulære komplekse resultater

 $\mathbf{r} \angle \boldsymbol{\theta}$ polære komplekse resultater

Noter:

- Komplekse resultater vises ikke, medmindre der indtastes komplekse tal.
- Brug multitryktasten $\overline{\pi_i^e}$ til at få adgang til *i* på tastaturet.
- Variablerne *x*, *y*, *z*, *t*, *a*, *b*, *c* og *d* er reelle eller komplekse.
- Komplekse tal kan gemmes.
- Komplekse tal er ikke tilladt i data, matrix, vektor, og hvor komplekse argumenter ikke er gyldige. En funktion kan defineres med et komplekst taludtryk og beregnes på hovedskærmen, ikke i tabellen.
- For conj(, real(, og imag(kan argumentet være i enten rektangulær eller polær form. Outputtet for conj(bestemmes af tilstandsindstillingen.
- Outputtet for real(og imag(er reelle tal.
- Indstil tilstanden til DEGREE (GRADER) eller RADIAN afhængigt af den ønskede vinkelmåling.

Menuen Complex (Kompleks)	Beskrivelse	
1:∠	∠ (polært vinkeltegn)	
	Gør det muligt at indsætte den polære repræsentation af et komplekst tal (f.eks. 5 $\angle \pi$).	
2:polar angle (polær vinkel)	Returnerer den polære vinkel for et komplekst tal.	
	Syntaks: angle(værdi)	
3:magnitude	Returnerer modulus af et komplekst tal.	
	Syntaks: abs(værdi) (eller □ i MathPrint™- tilstand)	
4:) r∠θ	Viser et komplekst resultat i polær form. Kun gyldig i slutningen af et udtryk.	
5:) a+bi	Viser et komplekst resultat på rektangulær form. Kun gyldig i slutningen af et udtryk.	
6:conjugate	Returnerer den konjugerede til et komplekst tal.	
	Syntaks: conj(<i>værdi</i>)	
7:real (reel)	Returnerer den reelle del af et komplekst tal.	
	Syntaks: real(værdi)	
8:imaginary (imaginær)	Returnerer den imaginære del af et komplekst tal.	
	Syntaks: imag(værdi)	
Polært vinkeltegn: ∠	[clear] 5 [2nd] [complex][enter] $\boxed{\pi_{i}^{\circ}} \stackrel{\mathbb{D}}{=} 2$ [enter]	5∠ <u>π</u> 2 5i
----------------------------	---	------------------------------
Polær vinkel angle(clear 2nd complex enter 3 \div 4 π_i^e π_i^e π_i^e) enter π_i^e π_i^e)	angle(3+4i) 0.927295218
modulus abs($\begin{array}{c} \hline \text{clear} & \text{2nd} & [\text{complex}] 3 \\ \hline (& 3 + 4 & \pi_i^e & \pi_i^e & \pi_i^e \end{array} \\ \hline \text{enter} \end{array}$	(3+4i) ⁸⁸⁰ Š
▶r∠θ	Clear 3 $+$ 4 π_i^e π_i^e π_i^e 2nd [complex] 4 [enter]	3+4i▶r∠0 5∠0.927295218
▶a+bi	Clear 5 [2nd] [complex][enter] 3 (\overline{T})] [] 2 (\overline{T})] 2 nd] [complex] 5 [complex]	5∠ <u>3π</u> ≯a+bi -5i
Konjugeret: conj(Clear 2nd [complex] 6 5 - 6 π_i° π_i° π_i°) enter -	conj(5-6i) [™] 5+6í
Reel: real(Clear 2nd [complex] 7 5 - 6 π_i° π_i° π_i°) enter	real(5-6i) 5

Eksempler (indstil tilstanden til RADIAN)

Referenceoplysninger

Dette afsnit indeholder oplysninger om fejl, vedligeholdelse og udskiftning af batterierne og fejlfinding.

Fejl og meddelelser

Når lommeregneren registrerer en fejl, viser skærmen fejltypen eller en meddelelse.

- Sådan rettes en fejl: Tryk på dear for at rydde fejlskærmen. Markøren vises på eller nær fejlen. Ret udtrykket.
- Sådan lukkes fejlskærmen uden at rette udtrykket: Tryk på [auit] for at vende tilbage til hovedskærmen.

Følgende liste omfatter nogle af de fejl og meddelelser, der kan opstå.

Fejl/meddelelse	Beskrivelse
Argument	 Denne fejl returneres, når: en funktion ikke har det korrekte antal argumenter den nedre grænse er højere end den øvre grænse i summation eller produktfunktion.
Bad Guess (Dårligt gæt)	Denne fejl returneres, når den indtastede variabel for "løs for"- variablen i Numerisk løser er uden for den nedre og øvre grænse, der er indtastet.
Bounds: Enter LOWER ≤ UPPER (Grænser: Indtast nedre ≤ øvre)	Denne fejl returneres, når input for nedre grænse > øvre grænse for: • Normalcdf-fordeling • Løsningsgrænser for Numerisk løser
Break (Afbryd)	Denne fejl returneres, når der trykkes på on-tasten for at stoppe evalueringen af et udtryk.
Calculate 1-Var,2-Var Stat or a regression. (Beregn 1-Var,2- Var Stat eller en regression.)	Denne meddelelse returneres, når der ikke er gemt nogen statistik- eller regressionsberegning.
Change mode to DEC. (Skift tilstand til DEC.)	Denne fejl returneres, når tilstanden er indstillet til BIN, HEX eller OCT, og følgende apps er åbnet:

Fejl/meddelelse	Beskrivelse
	[expr-eval]table [convert] [stat-reg/distr] data [num-solv]poly-solv]sys-solv][matrix] [vector] Disse apps er kun tilgængelige i
	DEC-tilstand.
Dimension mismatch (Dimensionsuoverensstemmelse)	Denne fejl returneres, hvis dimensionerne for en matrix eller vektor i en beregning ikke er korrekte for operationen.
Division by 0 (Division med 0)	Denne fejl returneres, hvis udtryksevalueringen indeholder division med 0.
Domain (Domæne)	Denne fejl returneres, når et argument ikke er i funktionsdomænet. For eksempel: • For x√y:
	<i>x</i> = 0
	– eller –
	y < 0 og x er ikke et ulige heltal.
	• For y^{x} : y og $x = 0$. • For \sqrt{x} : $x < 0$.
	• For log, in eller logBASE: $x \le 0$.
	 For tan: x = 90°, -90°, 270°, - 270°, 450° osv. og tilsvarende i radiantilstand.
	• For sin ⁻¹ eller cos ⁻¹ : $ x > 1$.
	• For nCr eller nPr : n eller r er ikke heltal ≥ 0 .
	• For x!: x er ikke et heltal mellem 0 og 69.
Enter 0≤area≤1 (Indtast ≤område≤1)	Denne fejl returneres, når du indtaster en ugyldig områdeværdi i invNormal for en fordeling.
Enter sigma>0 (Indtast sigma>0)	Denne fejl returneres, når inputtet for sigma i en fordeling er ugyldigt.

Fejl/meddelelse	Beskrivelse
Expression is too long (Udtrykket er for langt)	Denne fejl returneres, når en indtastning overstiger ciffergrænserne. For eksempel ved indsættelse af en udtryksindtastning med en konstant, der overskrider grænsen. En skakternet markør vises muligvis, når grænserne er nået i hver enkelt MathPrint™-funktion.
Formula (Formel)	 Denne fejl returneres i data, når: formlen ikke indeholder et listenavn (L1, L2 eller L3) formlen for en liste indeholder sit eget listenavn. Eksempel: En formel for L1 indeholder L1.
Frequency: Enter FREQ≥0 (Frekvens: Indtast FREQ≥0)	Denne fejl returneres, når mindst et element på en liste, der er valgt for <i>FREQ</i> , er et negativt reelt tal i 1-VAR eller 2-VAR STATS .
Highest degree coefficient cannot be zero. (Koefficient for højeste grad kan ikke være nul.)	Denne fejl returneres, når koefficienten, a, i polynomiumløserens beregning er forudfyldt med nul, eller hvis inputtet til a er nul. Udskift med en værdi, der ikke er nul.
Input must be non-negative Integer. (Input skal være ikke- negativt heltal.)	Denne fejl returneres, når et input ikke er er den forventede taltype. Eksempel: i fordelingsargumenter <i>TRIALS</i> og <i>x</i> i Binomialpdf.
Input must be Real (Input skal være reelt)	Denne fejl returneres, når et input kræver et reelt tal.
Invalid data type (Ugyldig datatype)	Denne fejl returneres, når argumentet for en kommando eller funktion er den forkerte datatype. Eksempel: Fejlen vises for sin(i) eller min(i,7), hvor argumenterne skal være reelle tal.
Invalid Dimension (Ugyldig	Denne tejl returneres, når en

Fejl/meddelelse	Beskrivelse
dimension)	matrix- eller vektoroperation ikke kan udføres pga. forkerte dimensioner.
Invalid equation (Ugyldig ligning)	Denne fejl returneres, når en der indtastes en ugyldig ligning, f.eks. 1000=10000, eller en tom ligning i den numeriske løser.
Invalid function (Ugyldig funktion)	Denne fejl returneres, når der ikke er defineret nogen funktion, og der forsøges en funktionsevaluering. Definer funktioner i Table .
List Dimension	Denne fejl returneres i data), når:
1≤dim(list)≤50 (Listedimension ≤dim(list)≤50)	 funktionen SUM LIST (Sumliste) udføres på en tom liste
	 der oprettes en sekvens med en længde på 0 eller >50.
Max iterations reached. Try new guess. (Maks. iterationer nået. Prøv et nyt gæt.)	Denne fejl returneres, når den numeriske ligningsløser har overskredet det maksimale tilladte antal iterationer for at finde en løsning. Udskift det oprindelige gæt for løsningsvariablen, eller kontroller ligningen.
Mean: Enter mu>0 (Middelværdi: Indtast mu>0)	Denne fejl returneres, når der indtastes en ugyldig værdi for middelværdien (<i>middelværdi</i> = <i>mu</i>) i poissonpdf eller poissoncdf.
Memory limit reached (Hukommelsesgrænse nået)	Denne fejl returneres, når en beregning indeholder en cirkulær reference, f.eks. to funktioner, der refererer til hinanden, eller en meget lang beregning.
No sign change found. Try new guess. (Intet tegnskifte fundet. Prøv et nyt gæt.)	Denne fejl returneres, når den numerisk løsers algoritme ikke kan finde en løsning. Udskift det oprindelige gæt for løsningsvariablen, eller kontroller ligningen. Gentagne rodligninger, f.eks. x^2=0, har ikke noget tegnskifte omkring roden, hvilket er

Fejl/meddelelse	Beskrivelse
	afgørende, for at den numeriske løsers algoritme kan iterere til en løsning.
[2nd] [set op]: Operation is not defined. ([2nd] [set op]: Operation er ikke defineret.)	Denne fejl returneres, når en operation ikke er defineret i 2nd [set op], og der trykkes på 2nd [op].
Operation set! [2nd] [op] pastes to Home Screen. (Operation indstillet! [2nd] [op] indsættes på hovedskærmen.)	Denne meddelelse returneres, når en operation gemmes (indstilles) fra [2nd] [set op] - editoren. Tryk på en tilfældig tast for at fortsætte.
Overflow (Overløb)	Denne fejl returneres, når en beregning eller værdi er uden for lommeregnerens område.
Probability: Enter 0≤p≤1 (Sandsynlighed: Indtast 0≤p≤1)	Denne fejl returneres, når inputtet for sandsynligheden i fordelinger er ugyldigt.
Singular Matrix (Enkelt matrix)	Denne fejl returneres, når det inverse af en enkelt matrix forsøges. En enkelt matrix har determinant = 0.
Singularity (Singularitet)	Denne fejl returneres, når den numeriske løsers algoritme ikke kan returnere en løsning pga. et punkt, hvor funktionen ikke er defineret.
Statistics (Statistik)	Denne fejl returneres, når en statistik- eller regressionsfunktion er ugyldig. Eksempel: Når en beregning af 1- var eller 2-var stats forsøges uden definerede datapunkter.
Step size must not be 0. (Trinstørrelse må ikke være 0.)	Denne fejl returneres i data, når input for <i>STEP SIZE</i> <i>(Trinstørrelse)</i> er indstillet til 0 i funktionen SEQUENCE FILL (Sekvensudfyldning) .
Syntax (Syntaks)	Denne fejl returneres, når et udtryk indeholder fejlplacerede funktioner, argumenter, parenteser eller kommaer.

Fejl/meddelelse	Beskrivelse
Tolerance not met (Tolerance ikke opfyldt)	Denne fejl returneres, når toleranceargumentet, f.eks. i numerisk differentiering eller numerisk integration, er sådan, at algoritmen ikke kan returnere et nøjagtigt resultat.
TRIALS: Enter 0≤n≤49 (Prøver: Indtast 0 ≤n≤49)	Denne fejl returneres i Binomialpdf og Binomialcdf, når antallet af prøver er uden for området, $0 \le n \le 49$, i tilfælde af ALL (Alle).
Undefined (Udefineret)	Denne fejl returneres, når en matrix eller vektor ikke er defineret. Definer matrix eller vektor i [matrix] eller [vector]- menuen EDIT (Redigering).

Batteri

Forholdsregler med batterier

- Efterlad ikke batterier inden for børns rækkevidde.
- Sammenbland ikke nye og brugte batterier.
- Sammenbland ikke forskellige batterimærker eller -typer inden for samme mærke.
- Brug ikke genopladelige batterier.
- Sæt aldrig ikke-genopladelige batterier i en batterioplader.
- Overhold polariteten ved isætning af batterier (+ og -).
- Bortskaf straks batterierne på reglementeret måde.
- Brænd ikke batterierne, og skil dem ikke ad.
- Søg øjeblikkeligt lægeassistance, hvis et batteri eller en celle sluges. (I USA ringes gratis til National Capital Poison Center på 1-800-222-1222).

Bortskafning af batterier

Ødelæg ikke batterierne, prik ikke hul på dem og brænd dem ikke. Batterierne kan lække eller eksplodere og dermed afgive farlige kemikalier. Bortskaf brugte batterier i henhold til de lokale regler.

Sådan udtages og udskiftes batterierne

Lommeregneren TI-30X Pro MathPrint™ bruger to 3-volt CR2032-batterier.

- Aftag dækslet, og vend lommeregneren med forsiden nedad.
- Fjern skruerne fra husets bagside med en lille skruetrækker.
- Skil forsigtigt forsiden fra bagsiden. Pas på ikke at skade de indvendige dele.
- Fjern skruerne fra batteriklemmen med en lille skruetrækker, og tag batteriene ud.

 Når batterierne skal udskiftes, kontrolleres polariteten (+ og -), og de nye batterier skubbes på plads. Brug tilpas kraft til at trykke de nye batterier på plads, og fastgør skruen i batteriklemmen igen.

Vigtigt: Ved udskiftning af batterierne skal du undgå kontakt med de andre komponenter i lommeregneren.

Bortskaf straks de brugte batterier i overensstemmelse med de lokale bestemmelser.

I henhold til CA Regulation 22 CCR 67384.4 gælder følgende for knapcellebatterierne i denne enhed:

Perchloratmateriale – særlig håndtering kan være nødvendig.

Se: www.dtsc.ca.gov/hazardouswaste/perchlorate

I tilfælde af problemer

Gennemgå vejledningen for at sikre, at beregningerne er udført korrekt.

Kontroller, at batterierne er friske og korrekt isat.

Udskift batterierne, når:

- **on** ikke tænder enheden
- skærmen bliver tom
- du får utilsigtede resultater.

Generelle oplysninger

Onlinehjælp

education.ti.com/eguide

Vælg dit land for at få flere produktoplysninger.

Kontakt TI Support

education.ti.com/ti-cares

Vælg dit land for at få tekniske ressourcer og andre supportressourcer.

Oplysninger om service og garanti

Oplysninger om garantiens varighed og betingelser eller om produktservice findes i garantierklæringen, der følger med dette produkt, eller ved at kontakte den lokale forhandler/distributør af Texas Instruments.